Перегляд за Автор "Fedorovych, Dariya"
Зараз показуємо 1 - 2 з 2
- Результатів на сторінці
- Налаштування сортування
Документ Identification of the genes a¡ecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis(2011) Boretsky, Yuriy; Pynyaha, Yuriy; Boretsky, Volodymyr; Fedorovych, Dariya; Fayura, Lyubov; Protchenko, Olha; Philpott, Caroline; Sibirny, AndriyPichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondii Dvma1-17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondii Dfra1-45 mutant accumulated 1.8–2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Dvma1-17 and Dfes1-77 knockout strains could not grow at 37 1C in contrast to the wild-type strain and the Dfra1-45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 1C. Although the Dfes1-77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80-22. Complementation analysis revealed that Dvma1-17 and Dfra1-45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast.Документ Oversynthesis of Riboflavin in the Yeast Pichia guilliermondii is Accompanied by Reduced Catalase and Superoxide Dismutases Activities(2013) Prokopiv, Tetyana; Fedorovych, Dariya; Boretsky, Yuriy; Sibirny, Andriy; Борецький, ЮрійIron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. Under iron deprivation conditions, Pichia guilliermondii cells increase production of riboflavin and malondialdehyde and the formation of protein carbonyl groups, which reflect increased intracellular content of reactive oxygen species. In this study, we found that P. guilliermondii iron deprived cells showed dramatically decreased catalase and superoxide dismutase activities. Previously reported mutations rib80, rib81, and hit1, which affect repression of riboflavin synthesis and iron accumulation by iron ions, caused similar drops in activities of the mentioned enzymes. These findings could explain the previously described development of oxidative stress in iron deprived or mutated P. guilliermondii cells that overproduce riboflavin. Similar decrease in superoxide dismutase activities was observed in iron deprived cells in the nonflavinogenic yeast Saccharomyces cerevisiae.