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Abstract—Using a standard suffix-tree algorithm, we study 

the repetition characteristic v(t), which has been introduced by 

F. Golcher, for different models of random symbolic sequences 

and compare it with the corresponding data obtained for 

natural-language texts and program codes. The character of 

v(t) function, the saturated repetition parameter v0 averaged at 

large enough  times t and the appropriate standard deviation 

∆v0 are examined for 144 natural, random and randomized 

texts of different types. The main peculiarities of repetitions 

peculiar for the Simon, Markov and Miller’s monkey text-

generating models are analyzed. The results obtained for these 

analytically tractable models can be useful for developing 
mathematical fundamentals of the repetition characteristic.  

Keywords—repetition characteristic, symbolic sequences, 

random texts, Simon model, Markov chains, monkey texts 

I. INTRODUCTION 

Quantitative regularities for the repetitions observed in 
symbolic sequences or (natural or artificial) texts are 
important for better understanding of these sequences and 
elucidating the nature of their underlying generating 
mechanisms. Moreover, the above regularities can hopefully 
be used when distinguishing uncorrelated random symbolic 
sequences from heavily correlated natural texts. Recently, 
F. Golcher has offered a repetition characteristic v(t) [1]. It 
can be expressed through dependence of the number n of 
internal nodes of the suffix tree, which is built upon a given 
symbolic sequence, on the current length t of this sequence. 
More specifically, we have 

 
t

Tn
tv t )(
)( = , t = 1, …, L (1) 

In (1), Tt denotes an incomplete suffix tree built on a sub-text 

tS of a complete symbolic sequence (or a text) S, of which 

length |S| is equal to L. In quite equivalent terms, v(t) is 
nothing but the number of completed n-grams which have 
been repeated in the text at least once. According to [1], the 
v(t) dependence reveals a saturation (or a ‘limit’, although 
with no relevant mathematical implications being studied) 
for the natural-language texts, with the saturated value v0 

being close to ½. On the other hand, randomly generated 
symbolic sequences, randomized natural texts and, quite 
surprisingly, even the ‘texts’ comprising source program 
codes manifest no equilibrium repetition parameter or, at 
least, have the v0 values incompatible with the value ½ [1].  

Although there have been a number of further inquiries 
on the repetition characteristic (see [2]−[4]), the subject 
remains unclear in too many aspects. Since there is still no 
solid mathematical background of the repetition 
characteristic, we consider it relevant to study the v(t) 
function for as many artificial symbolic sequences of 
different types as possible, and gather the corresponding 
information in order to comprehend better this characteristic 
and its discriminating power. 

II. METHOD AND TEXT MODELS 

The v(t) characteristic was calculated using a standard 
suffix-tree algorithm [5] (see also [4]). With a few deliberate 
exceptions, we measured the v(t) function for single texts 
rather than textual corpora, in order not to deal with the 
boundary effects and ‘inhomogeneities’ arising where 
individual texts are merged. In strict terms, we suspect that 
the v(t) characteristic and, in particular, its saturated value v0 
can become ill-defined for the merged texts which represent 
partly ‘incoherent’ structures.  

We studied the v(t) dependences for the following 
theoretical (or empirical) text models: (i) the Miller’s 
monkey texts [6]−[9], (ii) the Simon model [10], (iii) the 
model of Markov chains (see [11], [12]), and (iv) the 
Chomsky texts (see, e.g., [13]). These random texts were 
contrasted with (v) the natural-language texts, (vi) the 
randomized natural texts (see also [2]−[4], [14]), and (vii) the 
texts of program codes. In general, we examined Σ = 144 
texts of different types, of which total length amounted to 

8106.3 ⋅≈ΣL  characters. 

A monkey text represents a simplified text model in 
which each of M letters is typed at random and has the same 
relative frequency f in a text. Besides of such ‘canonical’ 
monkey texts, we also constructed generalized monkey texts 
[4], where the letters were chosen randomly, although their 
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frequencies could be different from each other 

( 1/ minmax ≠= ffb , with maxf  and minf being respectively 

the maximal and minimal relative frequencies of letters). We 
varied the b parameter in the interval b = 1÷300. We adopted 
three different regimes for the rank−frequency dependences 
f(r) (with r denoting a rank): (i) a simple linear f(r) function, 
(ii) a logarithmic f(r) function, which is a good approximation 
for the natural language [15], and (iii) an arbitrary (random) 
f(r) dependence, with the natural normalization condition 

1
1

=∑ =

M

i
if  satisfied. Particular cases of the alphabet sizes 

M = 1, 2, 5, 15 and 26 were dealt with. 

For all of our monkey texts (see Table I), we put the 
frequency of a word separator (a space) to be equal to 0.2, 
which corresponded to the average word length typical for 
English. 

In a classical Simon text-generation model [10]−[16], one 
takes at random either a ‘new’ word from a reservoir (with a 
constant probability p; typically p << 1) or an ‘old’ word 
already available in a text (with the complementary 
probability (1 – p)), and every word token present in the text 
have the same probability to be chosen at a current position t 
in the text. An alternative model can be two reservoirs of 
different classes of words, with different probabilities p1 and 
p2, which successfully simulates some realities of the natural 
language (see [17], [18]). 

TABLE I.  TEXT MODELS AND TEXT TYPES FOR WHICH THE REPETITION 

CHARACTERISTIC IS EXAMINED 

Text Model or Text Type 
Number  

of Texts 

Text Length, 

Characters 

Miller’s Monkey Model 21 106 ÷ 2·107 

Simon Model 65 3·105, 2.2·106 

Markov Model 23 106, 5.5·105 

Chomsky Model 1 2.5·106 

Natural Texts 10 7·104 ÷ 2.5·106 

Randomized Natural Texts 4 106, 2.5·106 

Program Codes 20 5·104 ÷ 7·106 

 

It is known that the Simon model yields in a too fast 
(linear) increase of the vocabulary V of words with 
increasing t, which is not typical for the natural texts where 
the vocabulary grows sublinearly. A simple modification of 
the above algorithm has been suggested [16], [19]. Here the 
probability p decreases with increasing t according to a 

power law ( 1
0~)( −θ
tptp , with θ < 1), in order to provide a 

well-known Heaps law for the vocabulary ( θ
ttV ~)( ). We 

conventionally call these Simon texts as ‘sublinear’. 

Another modified Simon model used by us is the texts 
with memory (see [20]). The latter effect is mimicked such 
that the probability of selecting one of the ‘old’ words from 
the text becomes higher when this word is located at the 
position (t – i), which is closer to the current position t (i.e., 
at smaller i’s). Three memory functions are employed: an 
exponential one which models short-range correlations in a 
text, and stretched exponential or power-law functions, 
which correspond to long-range correlations (see, e.g., [14], 
[21], [22]). Besides the time range, the memory effect is also 
characterized by its strength, i.e. the amplitude factor 
involved in the memory-governing function. Larger 

amplitude would imply longer series of repetitions of the 
same words in a text. 

In total, 65 Simon texts were studied (Table I), which 
combine different modeling properties described above 
(‘linear’ or ‘sublinear’, a single word reservoir or two 
reservoirs, and availability of a memory of some type or 
absence of memory effect). 

We define a Markov text as a chain of symbols (letters or 
words), in which each symbol is chosen at random according 
to its predefined conditional probability [11], [12]. The latter 
depends on the symbol itself and N symbols preceding it. 
These probabilities can be calculated in advance from some 
natural text or a corpus of texts. According to our 
conventional definition, generation of a Markov text of order 
N is governed by the conditional probabilities of symbols 
that depend on their (N – 1) predecessors. For example, the 
text of the first order (N = 1) is based upon single-symbol 
probabilities only, with considering no preceding symbols. 
Therefore, this text generated on the level of letters should be 
similar to a generalized monkey text with the letter 
frequencies adopted from the same natural text. 

For our studies, we have generated the Markov texts that 
correspond to the both levels of letters (the text length 
L ≈ 1.0·106 characters) and words (L ≈ 5.5·105 characters), 
with the orders N = 1÷10 (see Table I). 

Finally, we define a Chomsky text as a natural-language 
text in which a word separator and some letter replace each 
other. In spite of this small perturbation, the structure and the 
number of words are notably changed, if compared with the 
original text. Nonetheless, we still expect only minor 
changes in the v(t) characteristic. 

Natural texts of English fiction (“Redgauntlet” by 
W. Scott, “The Lord of the Rings” by J. R. R. Tolkien, 
“Harry Potter and the Sorcerer’s Stone” by J. K. Rowling, 
etc.) were downloaded from a free source Project Gutenberg 
(see Table I). We studied also randomized versions of some 
of these natural texts. The latter were obtained through 
shuffling on the linguistic levels of symbols or words. 
109 elementary random permutation (shuffling) cycles were 
applied to a text, thus destroying intentional repetitions 
characteristic for the natural language and leaving only 
stochastically caused ones. 

The program texts prepared by us included source codes 
written in C, C++ and Java. Note that any program text 
represents a mixture of two constituents, a program itself 
which is written in a computer code and comments written in 
a natural language. To eliminate a possible impact of this 
intrinsic inhomogeneity of program texts, we studied both 
the whole texts, as well as the appropriate subtexts associated 
with the code and the comments, which were separated from 
each other. The program texts under test involved also 3 
merged texts (including a source code of Linux). 

Since, by definition, the models of random texts 
mentioned above included no punctuation marks, we 
preprocessed the natural texts in the same manner to make 
the appropriate comparison more consistent. Moreover, 
lower- and upper-case letters were not distinguished. 
However, the program texts were not preprocessed in this 
way. One of the reasons is that most of the non-alphabetical 
symbols involved in a computer code bear a semantic load, 
like words in a human language. 
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III. RESULTS AND DISCUSSION 

A. General 

Considering a wide scope of our studies and a confined 
volume of article, we present only a brief account of the 
main results. A complete report on our findings will be 
published elsewhere.  

For each text, we have found the v(t) function. It turns out 
that the latter can manifest the following typical patterns: 
(i) a gradual saturation occurring at t > t0 [Notice that we 

have 4
0 10)52( ⋅÷≈t characters for most of the natural texts 

[4]], (ii) pronounced oscillations observed even at the largest 
times t (as with the canonical monkey texts with large 
enough alphabets [1]), and (iii) an irregular, hardly 
predictable behavior. To adhere to quantitative rather than 
this qualitative terminology, we continue with the notion of 
‘saturated v0 value’ though redefine it as an average over a 
finite number of data points, typically over 10÷50 points 
taken at t > 5·104. We omit a more strict term ‘limit of v(t) 
function’ as too claiming in its mathematical sense. 

To evaluate formally a convergence of the repetition 
characteristic, we have introduced the corresponding 
standard deviation ∆v0, which is calculated on the same 
dataset as the v0 value. Disregarding a quite possible, though 
hardly analytically tractable, situation when the v(t) function 
is clearly ‘divergent’ or unpredictable, one can hope that the 
∆v0 parameter behaves as if its underlying stochastic process 
were Gaussian. According to the central limit theorem, we 
then should have ∆v0 ~ L–1/2 for the dependence on the size L 
of stochastic system. In practice, we indeed arrive at the 
inverse power-law ∆v0(L) ~ L–α, with the exponent α close to 
the theoretical value, α ≈ 0.6 (see Fig. 1). Note that our texts 
can have the sizes that differ by orders of magnitude (see 
Table I). Then, instead of the ∆v0 measure, it would be better 
to compare the convergent properties of v(t) for different 
texts, using a normalized standard deviation with accounting 
for text length, 

 ∆v0n = ∆v0L
1/2/Σ (2) 

 

Fig. 1. Dependence of standard deviation ∆v0 on the text length L for 

all of our texts. The line corresponds to power-law fitting ∆v0(L) ~ L–α, with 
the exponent α ≈ 0.6 

where the total number of texts Σ in the denominator 
represents an optional factor used only for convenience. 
Further on, we employ the ∆v0n parameter as a main 
indicator of convergent behavior of the v(t) dependences 
obtained for different texts. In particular, Table II displays 
the average repetition parameters v0 and the normalized 

standard deviations ∆v0n, which have been averaged over all 
the texts belonging to a given text type. 

TABLE II.  AVERAGE V0 REPETITION PARAMETERS AND 

NORMALIZED STANDARD DEVIATIONS ∆V0N AVERAGED FOR DIFFERENT 

TEXT TYPES 

Text Type 
Average 

Value v0 

Normalized 

Standard 

Deviation ∆v0n 

Averaged Over a 

Text Type 

Miller’s Monkey Texts 0.30÷1.00 0.009 

Simon Texts without Memory 

Simon Texts with Memory 

0.46÷0.60 

0.55÷0.86 

0.028 

0.047 

Markov Texts with Letter Chains 

Markov Texts with Word Chains 

0.40÷0.52 

0.48÷0.53 

0.050 

0.039 

Chomsky Text 0.51 0.004 

Natural Texts 0.49÷0.55 0.016 

Natural Texts Randomized by Letters 

Natural Texts Randomized by Words 

0.35 

0.47 

0.013 

0.006 

Program Texts with Comments 

Pure Program Codes 

Pure Comments 

0.55÷0.64 

0.62÷0.64 

0.55÷0.57 

0.048 

0.047 

0.013 

 

B. Natural, Randomized Natural and Program Texts 

In accordance with the data [1]−[4], the natural texts are 
characterized by a clearly convergent v(t) behavior, with the 
v0 value compatible with ½. Since there are no indications in 
the literature that this type of symbolic sequences can reveal 
deviations from convergence, while the highest ∆v0n value 
found for the natural texts is equal to 0.035, one can roughly 

adopt that the values ∆v0n 04.0≥  can be tentatively treated 
as those signalizing of possibly divergent behavior of the 
repetition characteristic (see Table II). 

As can be easily predicted, the receipt of a Chomsky text 
does not imply any serious perturbation of an initial natural 
text. Therefore their saturated repetition parameters almost 
coincide. 

Randomization of natural texts makes the saturation 
property of the v(t) function more evident, since it drops the 
∆v0n value down (see Table II). Randomization performed on 
the level of letters destroys both the word order and the 
internal structure of words. In other words, all the ‘regular’ 
repetitions, which are peculiar for the human language, are 
eliminated. Only ‘accidental’ repetitions survive, which are 
determined by combinatorial rules acting at a given alphabet 
size and a given frequency distribution for the letters. 
Therefore, this randomization type is much more efficient in 
lowering the v0 value, when compared with the word-based 
randomization that preserves the word structure. Of course, 
the randomization does not change the distribution of letters’ 
frequencies but eliminates all of those extra repetitions which 
are associated with the long-range correlations in texts. 

Repetitions are always more characteristics for the 
program texts than the natural ones, irrespective of whether 
we consider pure program codes or whole programs with 
inclusions of comments. This is especially obvious in the 
case of pure program codes (see Table II). The latter 
conclusion becomes even more striking if one reminds that 
the computer code includes more characters than the human 
language and, in a hypothetical case of merely stochastic 
repetitions, this would have resulted in less rather than more 
repetitions (see also the results for the monkey texts 
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discussed below). Finally, even the pure comments written in 
human language are more iterative than the natural texts. 
This is evident since the language of comments is poorer and 
more strict and explicit than the language of literary fiction. 

Following from the ∆v0n value for the program texts (see 
Table II), there are not unfounded doubts concerning their 
saturation property. Of course, one can speculate that the 
typical time regions t0 of saturation are, for some reasons, 
significantly larger than those for the natural texts, although 
this assumption could hardly be agreed with the earlier 
empirical findings [1], [3]. It would indeed be natural to 
explain this situation by the fact that any program code 
represents mingled natural and computer languages (see 
Introduction). However, the data of Table II denies this 
simple explanation because the ∆v0n values are almost the 
same for the whole program texts and the codes depleted of 
comments. 

Notice also that, among the three different programming 
languages considered in this study, C and C++ can be 
characterized as ‘more regular’ (with the ∆v0n averages being 
equal to 0.031 and 0.024, respectively). For these texts, one 
can observe particular natural language-like examples 
(∆v0n ≈ 0.020) – or (more or less evident) oscillatory v(t) 
behavior. In this respect, the behavior of v(t) for Java is less 
predictable and we have the average deviation ∆v0n ≈ 0.085, 
which is surely out of the saturation range. 

C. Monkey Texts 

A general pattern observed for the canonical monkey 
texts (i.e., the texts in which all the letters have the same 
frequency) is as follows: v(t) manifests a saturation for small 
alphabet sizes M and increasingly intense oscillations at 
larger M. Since the oscillation period is nearly constant on a 
logarithmic time scale, it is difficult to make conclusions 
concerning the evolution of oscillation amplitude even with 
so relatively long texts as those studied in the present work. 

When degeneracy of the frequencies is broken ( 1≠b ), 
the oscillation amplitude and the deviation ∆v0n decrease, so 
that the system approaches steadily a saturated-repetition 
state. The larger alphabet, the larger difference of letter 
frequencies is needed in order to reach the saturation. For 
instance, in the case of M = 26 corresponding to the natural-
language alphabet, we have ∆v0n ≈ 0.046 at b = 1, 
∆v0n ≈ 0.033 at b = 3, and ∆v0n ≈ 0.003 at b = 150. Moreover, 
it seems that the exact shape of the rank−frequency 
dependence (e.g., logarithmic or linear f(r) functions) does not 
matter and the oscillations are eliminated simply at larger b’s. 

The saturated v0 value (or the average level of v(t) 
oscillations) decreases with increasing M. This is evident 
since larger M’s imply smaller-scale random repetitions of 
combinations of letters. The most important effect found for 
the random texts is influence of the b parameter on the 
saturated repetition value v0. In particular, as seen from 
Fig. 2, in case of M = 2 we have v0 ≈ 0.78 at b = 1 and 
v0 ≈ 0.96 at b = 150 (cf. with the data [4]). [Notice that, as 
with all the other v(t) illustrations given in the present work, 
Fig. 2 displays only a small initial part of the v(t) plot on a 
larger linear scale.] In other words, in what the repetition rate 
is concerned, a radical increase in the frequency gradient 

minmax / ffb =  makes the monkey text at M = 2 similar to the 

text with the alphabet M = 1 (v0 ≈ 0.999, thus implying a unit 
value).  

Quantitatively, the effect weakens with increasing M. For 
instance, v0 increases from 0.31 to 0.34 only in case of 
M = 26 at the same change in the b parameter. Finally, the 
v0(M) dependence obtained using our data and the results [4] 
(see the insert in Fig. 2) is satisfactorily described by the 
power-law function v0(M) = AM–B, with A ≈ 0.98 and 
B ≈ 0.36 (the Pearson correlation coefficient 9.996). These 
parameters agree very well with the data reported in [4] for a 
smaller dataset. 

 

Fig. 2. Dependences of repetition characteristic v(t) for the monkey 

texts with the alphabet size M = 2 and the gradient parameters b = 1 

(curve 2) and b = 150 (curve 1). Insert shows dependence of average 

saturated value v0 on the alphabet size M at b = 1, with the line 

corresponding to linear fit in the log-log scale 

D. Simon and Markov Texts 

Relatively high values of the repetition parameter typical 
for the Simon texts (see Table II) can be associated with the 
very principle of this generation model, while the memory 
still enhances this effect. Another feature of these texts is 
pronounced irregularities and breaks of their v(t) functions 
(see Fig. 3), which are more typical for the Simon model 
with memory. In general, such attributes as the number of 
word reservoirs or linear (sublinear) vocabulary growth 
affect weakly the v(t) characteristic. Nonetheless, the Simon 
texts with two reservoirs manifest the repetition properties 
closer to those of the natural texts. 

Finally, availability of memory increases the normalized 
standard deviation ∆v0n, so that the corresponding Simon 
texts can hardly reveal a true v(t) saturation. Maybe, the only 
exception is the Simon texts with (relatively weak) short-
range exponential memory, for which the saturation property 
is still questionable. As a conclusion, the Simon texts with 
memory are substantially different from the natural texts in 
their repetition-related characteristics. 

 

Fig. 3. Dependences of repetition characteristic v(t) for the Simon texts: 

linear vocabulary growth and two word reservoirs (curve 1), and linear 

vocabulary growth, a single word reservoir and stretched exponential 
memory function (curve 2) 
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Fig. 4 summarizes the main results obtained for the 
Markov texts, i.e. the average repetition parameter v0 and the 
appropriate standard deviation ∆v0 as functions of the chain 
order N. Note that, instead of ∆v0n, we use its non-normalized 
counterpart ∆v0, since the lengths of all the texts of a given 
type are the same. 

 (a) 

 (b) 

Fig. 4. Dependences of average parameter v0 (left vertical scale) and 

standard deviation ∆v0 (right vertical scale) on the chain order N for the 

Markov texts generated on the linguistic levels of letters (panel a) and 

words (panel b). A straight line in panel (b) corresponds to linear fit of 

∆v0(N). Insert in panel (a) shows the dependence [1 – (v0/ v0
0)] vs. N on a 

semi-logarithmic scale, with the line corresponding to the fit with 
exponential function v0(N) ~ v0

0[1 – exp(–N/N0)] (see the text) 

We begin with discussing the saturated value v0 for the 
Markov texts. The v0 parameter obtained for the letter-based 
Markov chains of the lowest order N = 1 (v0 ≈ 0.40) is 
compatible with the corresponding values typical for the 
randomized natural texts (v0 ≈ 0.35) and the monkey texts 
generated with a natural language-based rank dependence 
f(r) at M = 26 (v0 ≈ 0.34÷0.35 – see Table II). A similar 
situation happens for the word-based Markov texts: we have 
v0 ≈ 0.48 at N = 1, which is close to that observed for the 
natural texts randomized by words (v0 ≈ 0.47). Notice also 
that the latter two figures are closer to each other simply 
because the both processes of randomization and generation 
of Markov texts correspond to the same initial natural text. In 
other words, the randomized natural texts, the generalized 
monkey texts and the Markov texts generated at N = 1 have 
the following properties in common: (i) they lack any 
correlations or semantics-driven repetitions and, moreover, 
(ii) they are generated issuing from the same underlying 
letter-frequency distribution. It comes at no surprise that their 
v0’s are very similar. 

The empirical data illustrated in Fig 4a testifies that, with 
increasing N, the v0 parameter tends to a limit determined by 
the v0 value peculiar for the natural texts (~ 0.52). [By the 
way, the same should take place for the case of word-based 
Markov texts, although the appropriate results are less explicit 
against the background of experimental inaccuracies, so that 
one cannot arrive at decisive conclusion about the exact v0(N) 
function (see Fig. 4b).] Then it would be natural to assume 

that the v0(N) dependence for the letter-based Markov texts 
represents a canonical exponential ‘transient process’, which 
is known, e.g., from radio engineering: 

 v0(N) ~ v0
0[1 – exp(–N/N0)] (2) 

Here v0
0 denotes a limiting ‘equilibrium’ v0 value (i.e., the 

value for the appropriate natural text) and N0 implies a 
characteristic N-‘time’ needed to partially reach this 
equilibrium. If we take v0

0 = 0.52, a linear fit on the semi-
logarithmic v0(N) scale results in N0 ≈ 5.1, with the Pearson 
correlation 0.988 (see Fig. 4a, insert). Hence, the empirical 
data confirms our assumption. 

The main tendencies found for the v0(N) dependence and 
the appropriate quantitative differences existing between the 
Markov texts generated on the levels of letters and words can 
easily be explained from the most general reasoning: 

1. While the letter-based Markov texts of the lowest 
orders N simulate only underlying letter frequency 
distribution of the natural texts, the higher-order texts mimic 
also some portion of (at least short-range) correlations, which 
are tracked through the conditional probabilities of n-grams 
with ever larger n’s. 

2. At the lowest orders N, the word-based Markov texts 
reveal larger v0’s than the letter-based texts, since the former 
texts preserve the internal structure of words. With 
increasing N, the word-based texts would simulate not only 
the word structure but the word order. Finally, one can hope 
that a hypothetical limit of natural texts can be formally 

reached at ∞→N . 

Summing up, the approach of Markov chains works such 
that it mimics formally some essential properties of the 
human language and, in particular, its repetition patterns (see 
also the discussion [11]). [Of course, this does not imply that, 
at large enough N, the Markov texts can acquire a true 
semantic load which is peculiar for the natural texts.] In 
general, the Markov-chain process can be considered as a 
reciprocal of randomization of natural texts, i.e. as a kind of 
‘anti-randomization’ process. 

Finally, one can see that any type of ‘memory’ 
introduced into random text models gives rise to increasing 
repetition parameter, as seen from the properties of both 
Markov and Simon generating models. 

Regarding the convergence of the repetition characteristic, 
the letter-based and word-based Markov chains reveal 
somewhat different behaviors: while the standard deviation 
∆v0 for the latter texts remains nearly constant and almost 
does not depend on N, ∆v0 increases with increasing N for the 
former texts (cf. Fig. 4a with Fig. 4b). Notice that the 
maximal ∆v0’s (at N = 10) for the levels of letters and words 
correspond respectively to the normalized values 
∆v0n ≈ 0.120 and 0.083. This is why one can cast doubt upon 
the saturation property of the Markov texts of high orders. 
The reasons of this feature are still unclear and need further 
investigations. 

IV. CONCLUSIONS 

Let us summarize the main results derived in the present 
work. Following the definition of repetition characteristic 
v(t) given by F. Golcher in 2007 and implementing the 



2021 IEEE XIIth International Conference on Electronics and Information Technologies (ELIT) 

66 

 

corresponding calculations through the suffix-tree algorithm, 
we have examined the v(t) dependences for 144 texts of 
different types, which comprise natural-language texts, 
program codes and randomized natural texts, as well as a 
number of well-known random-text models such as Miller’s 
monkey, Simon and Markov schemes for generating 
symbolic sequences. 

In order to grasp the equilibrium repetition rate and the 
saturation property of the v(t) function, we work in terms of 
the parameter v0 averaged over large enough times t and the 
appropriate normalized standard deviation ∆v0n. Three main 
types of v(t) characteristics can be distinguished: a regular 
converging behavior, a regular (though oscillatory) behavior 
(which is typical for the ‘canonical’ monkey texts with large 
alphabets), and an irregular behavior with vague converging 
properties. 

Among principled results, one can mention a dependence 
of saturated value v0 on the gradient of letter frequencies in 
the generalized monkey texts. This implies that the repetition 
characteristic for the random texts can still be associated with 
the information entropy of underlying coding system (cf. 
with the conclusions [4]). Moreover, we have demonstrated 
that introduction of any memory effect in the text-generating 
model increases the repetition parameter v0. This fact is 
confirmed by the data derived for the Simon and Markov 
models. 

An important quantitative result has been obtained for the 
Markov model of random texts. We have found a saturated 
exponential increase in the v0 parameter, which occurs with 
increasing order N of the Markov texts with letter-based 
chains. Then the v0(N) function is described by a transient 
process which should finally develop into the repetition 
pattern peculiar for a natural text. According to both the 
working algorithm and the consequences for the repetition 
characteristic, the Markov receipt for generating symbolic 
sequences can be termed as a kind of ‘anti-randomization’, 
i.e. a process reciprocal to the process of randomization of 
natural texts. 

REFERENCES 

[1] F. Golcher, “A stable statistical constant specific for human language 
texts,” pp. 1–6, 2007. https://www.academia.edu/5986557/A_Stable_ 

Statistical_Constant_Specific_for_Human_Language_Texts 

[2] D. Kimura and K. Tanaka-Ishii, “Study on constants of natural 

language texts, J. Language Processing, vol. 21, pp. 877–895, 2014. 

[3] K. Tanaka-Ishii and S. Aihara, “Computational constancy measures 
of texts – Yule’s K and Renyi’s entropy,” Computational Linguistics, 

vol. 41, pp. 481–502, 2015. 

[4] O. S. Kushnir, L. B. Ivanitskyi, A. I. Kashuba, M. R. Mostova, and V. 

B. Mykhaylyk, “Repetition characteristic for single texts,” in 5th 
International Conference on Computational Linguistics and Intelligent 

Systems (Kharkiv, Ukraine). CEUR Workshop Proceedings, 2021, 
13 pp. (at press). 

[5] E. Ukkonen, “On-line construction of suffix-trees,” Algorithmica, vol. 
14, pp. 249–260, 1995. 

[6] W. Li, “Random texts exhibit Zipf’s-law-like word frequency 

distribution,” IEEE Trans. Inform Theory, vol. 38, pp. 1842–1845, 
1992. 

[7] R. Ferrer i Cancho and R. V. Solé, “Zipf’s law and random texts,” 

Adv. Complex Syst., vol. 5 pp. 1–6, 2002. 

[8] R. Ferrer-i-Cancho and B. Elvevåg, “Random texts do not exhibit the 
real Zipf’s law-like rank distribution,” PLoS ONE, vol. 5, e9411 (10 

pp.), 2010. 

[9] S. Bernhardsson, S. K. Baek, and P. Minnhagen, “A paradoxical 
property of the monkey book,” J. Statist. Mechanics: Theory and 

Experiment, vol. 2011, P07013 (13 pp.), 2011. 

[10] H. A. Simon, “On a class of skew distribution functions,” Biometrika, 
vol. 42, pp. 425–440, 1955. 

[11] I. Kanter and D.A. Kessler, “Markov processes: linguistics and Zipf’s 
law,” Phys. Rev. Lett., vol. 74, pp. 4559–4562, 1995. 

[12] A. Cohen, R. N. Mantegna, and S. Havlin, “Numerical analysis of 

word frequencies in artificial and natural language texts,” Fractals, 
vol. 5, pp. 95–104, 1997. 

[13] O. S. Kushnir, V. O. Buryi, S. V. Grydzhan, L. B. Ivanitskyi, and 

S. V. Rykhlyuk, “Zipf’s and Heaps’ laws for the natural and some 
related random texts,” Electronics and Information Technologies, vol. 

9, pp. 94–105, 2018.  

[14] M. A. Montemurro and P. A. Pury, “Long-range fractal correlations 
in literary corpora,” Fractals, vol. 10, pp. 451–461, 2002. 

[15] S. M. Gusein-Zade, “Frequency distribution of letters in the Russian 

language,” Problemy Peredachi Informatsii, vol. 24, pp. 102–107, 
1988. 

[16] D. H. Zanette, “Statistical patterns in written language,” Centro 

Atomico Bariloche, pp. 1–87, 2012, http://fisica.cab.cnea.gov.ar/ 
estadistica/2te/ 

[17] R. Ferrer i Cancho and R. V. Solé, “Two regimes in the frequency of 
words and the origins of complex lexicons: Zipf’s law revisited,” J. 

Quant. Linguist., vol. 8, pp. 165–173, 2001. 

[18] M. Gerlach and E. G. Altmann, “Stochastic model for the vocabulary 
growth in natural languages,” Phys. Rev. X, vol. 3, 021006 (10 pp.), 

2013. 

[19] D. H. Zanette and M. A. Montemurro, “Dynamics of text generation 
with realistic Zipf’s distribution,” J. Quant. Linguist., vol. 12, pp. 29–

40, 2005. 

[20] C. Cattuto, V. Loreto, and V. D. P. Servedio, “A Yule-Simon process 
with memory,” Europhys. Lett., vol. 76, pp. 208–214, 2006. 

[21] W. Ebeling and A. Neiman, “Long-range correlations between letters 

and sentences in texts,” Physica A, vol. 215, pp. 233–241, 1995. 

[22] J. W. Kantelhardt, “Fractal and multifractal time series,” in 
Mathematics of Complexity and Dynamical Systems, R. A. Meyers, 

Ed. New York: Springer, 2012, pp. 463–487. 

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/353782172

