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Polarized photoluminescence of Alq3 thin films obtained by the 
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Abstract. We show that the degree of linear polarization of the photoluminescence 
of tris-(8-hydroxyquinoline)aluminium (Alq3) thin film can be increased by about 10 
times, using a method of oblique-angle deposition. This is due to greater ordering of 
molecular alignment in this thin film. 
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1. Introduction 
Organic light-emitting diodes (OLEDs) are extensively investigated and commercialized. One of 
the most pressing problems in OLED technology is obtaining diode structures which produce 
polarized emitted light with a dichroic ratio larger than 40 [1]. Polarized light has a wide range of 
applications such as anti-glare and 3D displays, encrypted transport, optical communications, 
stereoscopic projection systems and biomedicine [1–3]. 

Tris(8-hydroxyquinoline)aluminium(III), which is commonly known as Alq3, is a material 
widely used in OLEDs [4]. It has been shown in Ref. [5] that the refractive index of Alq3 can be 
reduced from 1.75 to 1.45, when using an oblique-angle deposition and depositing it at 80°. 
Employing a lower refractive index of Alq3 layer in an OLED stack can give rise to a 30% 
increase in the efficiency, if compared to a control device. Nonetheless, no polarized-luminescence 
properties have been studied for Alq3. The only exception is Ref. [6] that has reported on obtaining 
a circularly polarized photoluminescence in Alq3 films fabricated by a method of glancing-angle 
deposition. 

In the present study, we report the results concerned with fabrication, structural 
characterization and polarized-luminescence properties of the Alq3 thin films obtained using a 
method of oblique-angle deposition on glass substrates. 

2. Experimental 
Organic Alq3 layers with the thickness less than 50 nm were thermally deposited in the vacuum 
10−4 Pa onto two glass substrates placed at the deposition angles (i.e., the angles between the 
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incoming vapour direction and the normal of substrate) equal to 0° and 80°. Alq3 powder with the 
purity higher than 98% was purchased from Tokyo Chemical Industry Co., Ltd. Thickness control 
during the processing was provided by a quartz-crystal deposition-rate controller.  

X-ray diffraction measurements were carried out using a STOE STADI P diffractometer with 
a linear position-sensitive detector in a transmission Bragg–Brentano geometry (Cu K1 radiation 
with the wavelength  = 0.15406 nm, a Ge (111) monochromator, the detector-scanning step 
amounting to 0.480◦ 2, the accumulation time 320 s, the 2 angle resolution 0.015 deg, and the 2 
range 5–65 deg).  

Alq3 powder was investigated by a standard method of differential thermal analysis (DTA), 
using a synchronous thermal analyzer Linseis STA PT 1600. Heating was performed in a dynamic 
argon atmosphere at the rate of 10 K/min from 298 K up to 683 K. A surface morphology of our 
samples was examined using a SOLVER P47-PRO atomic force microscope (NT-MDT Co., 
Moscow, Russia). 

Room-temperature photoluminescence spectra were measured using a quartz polarizer 
(Glan–Taylor prism) and a portable fibre-optic spectrometer AvaSpec-ULS2048L-USB2-UA-RS 
(Avantes BV, Apeldoorn, Netherlands) with the input slit 25 m, a diffraction grating 
characterized with 300 lines/mm, and the resolution 1.2 nm. The accumulation time was equal to 
200 ms. A rotating polarizer was placed between a source of photoluminescent radiation and a 
light detector. Detection of light in a spectrometer was carried out with a 2048-pixel CCD detector. 
Special software for automated computer control of spectrometer apparatus and spectra processing 
was used. The samples were excited with an M365FP1 fibre-coupled LED (Thorlabs, Inc., 
Newton, New Jersey, United States). It produced a non-polarized exciting radiation with the 
wavelength 365 nm, the bandwidth (FWHM) 9 nm and the output LED power 15.5 mW. 

3. Results and discussion 
Up to now, it has been demonstrated that Alq3 molecule has two different geometric isomers: 
meridional (mer-) and facial (fac-) [7]. To our knowledge, five crystalline phases of Alq3 have 
already been observed, which are termed as α, β, γ, δ and ε [7]. In their unit cell, α- and β-phases 
have two mer-Alq3 molecules, γ-phase two fac-Alq3 molecules, δ-phase four fac-Alq3 molecules 
and ε-phase three mer-Alq3 molecules [7–9]. 

X-ray diffraction pattern of the initial Alq3 powder is shown in Fig. 1. It is worthwhile that 
the X-ray diffraction analysis of OLED materials, including Alq3, is rather difficult, because the 
corresponding crystals are often disordered and ‘contaminated’ by some other polymorphs.  
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Fig. 1. X-ray diffraction profile 
obtained for initial Alq3 powder. 
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To understand better the thermal factors involved in generation of Alq3 phases, we have 
utilized a standard DTA method. A DTA curve for the initial Alq3 powder (the starting -Alq3 
phase) is shown in Fig. 2. Phase transitions resulting from thermal processing of Alq3 are evident. 
The temperatures of transformations are equal to 623 K (for the transition from -Alq3 to α-Alq3) 
and 662 K (for that from α-Alq3 to γ-Alq3). 
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Fig. 2. DTA curve measured for initial Alq3 powder.  

AFM micrographs of the thin Alq3 films are displayed in Fig. 3. Finally, Fig. 4 presents the 
room-temperature photoluminescence emission spectrum of Alq3 powder. This spectrum exhibits a 
characteristic green emission, with a wide band being observed in the region from approximately 
430 nm to 650 nm (see Fig. 4). 

(a)  (b) 
Fig. 3. AFM images of Alq3 thin films placed on glass substrates, as obtained at the deposition angles 0° (a) and 
80° (b).  
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Fig. 4. Room-temperature photoluminescence 
emission spectra of Alq3 powder. 
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When comparing our experimental results obtained by the methods of DTA, X-ray 
diffraction and luminescence spectroscopy with the literature data [10–15], one can conclude that 
our powder contains the crystalline phases -Alq3 and -Alq3. 

The polarized room-temperature photoluminescence emission spectra of thin Alq3 films are 
shown in Fig. 5 and Fig. 6. We suppose that a weakly distinguishable peak located at 550 nm is 
associated with a possible presence of Alq3(HCON(CH3)2) compound in our sample [16]. 
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Fig. 5. Room-temperature photoluminescence emission spectra of Alq3 thin film polarized parallel to X axis 
(curve ||) and Y axis (curve +), as obtained at the deposition angle 0° (see also Fig. 3).  
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Fig. 6. Room-temperature photoluminescence emission spectra of Alq3 thin film polarized parallel to X axis 
(curve ||) and Y axis (curve +), as obtained at the deposition angle 80° (see also Fig.3). 

Following from the polarized-photoluminescence measurements, we have calculated the 
degree ρ of linear polarization [17]: 

 = (I|| – I+)/(I|| + I+).     (1) 

Here I|| and I+ are the luminescence intensities of the perpendicular and parallel components, 
respectively. Note that correcting coefficients derived from the measurements with non-polarized 
light sources have been used. Basing on this approach, we have obtained the polarization degrees 
for the Alq3 thin films placed on glass substrates. For the case of light wavelength 526 nm, they 
are equal to ρ 0.02 and ρ 0.19 respectively for the deposition angles 0° and 80°. 
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It is known that the Alq3 molecule has a permanent dipole moment with 4.1 D [18, 19] and 
there is a lot of these molecules in the unit volume (~ 1014 cm−3) [19]. The molecules tend to be 
oriented with their dipole moments pointing away from the substrate. In the case of Alq3 films 
evaporated under ‘dark’ conditions, many researchers have observed a presence of a giant build-up 
surface potential, which reaches as large values as +50 V/m [18–23]. This surface potential 
disappears after irradiating the film during (or after) its deposition, whenever the irradiating-
photon energy exceeds the absorption edge of Alq3 [20, 22, 24]. A noncentrosymmetric orientation 
of the molecule is considered as the origin of this potential [20, 23, 25], although the mechanism 

of acentricity is still unclear. The alignment degree of the molecules is small ( sin ~ 0.05, with 

 being the angle between the dipole moment and the plane of layer and  denoting 

thermodynamic average for the molecules over all directions [19]. Therefore, the degree of 
anisotropy is also low [18, 20]. A very small polarization degree obtained by us at the deposition 
angle 0° agrees well with these statements. 

In the oblique-angle deposition process, the substrates are oriented at an oblique angle with 
respect to the incident vapour flux. Upon adsorption of the initial vapour species on the substrate 
and formation of the first islands, self-shadowing of these islands prevents the vapour flux from 
reaching the shadowed regions, thus leading to an ordered, porous and columnar growth [5, 26] 
(see Fig. 3b). In our opinion, this can be the reason for a significant increase in the polarization 
degree for our Alq3 thin films deposited at the angle 80°. 

4. Conclusion 
The thin films of Alq3 are synthesized using the method of thermal vacuum deposition on glass 
substrates placed at the deposition angles 0° and 80°. The optical and morphological properties of 
these films are discusssed. It is shown that the thin Alq3 films obtained by the method of oblique-
angle deposition can exhibit a significant polarized luminescence. 
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Анотація. Показано, що ступінь лінійної поляризації фотолюмінесценції тонкої плівки 
три-(8-гідроксихінолін)алюмінію (Alq3) можна збільшити приблизно в 10 разів, 
використовуючи метод осадження під деяким кутом до нормалі. Це пов’язано з більшим 
упорядкуванням молекулярного вирівнювання в цій тонкій плівці. 


