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1. INTRODUCTION

Questions related to the study of the behavior of entire functions over infinite curves (in particular,
logarithmic spirals) were considered in [1]–[5]. Macintyre [1] introduced the concept of indicator along
a logarithmic spiral and generalized the concept of associated function; Kennedy [2] studied analytical
functions in domains bounded by spiral-like curves Ck, k = 1, 2, arg z = ψk(z), z ∈ Ck, where ψk(r)
is a continuous, almost everywhere differentiable function for r > 0 and r|ψ′(r)| ≤ const; Balashov [3]
and Heifits [4] proved, respectively, theorems of Valiron and Valiron–Titchmarsh type for positive-order
entire functions with zeros on a logarithmic spiral.

Denote

lγϕ(a, b) = {z = |z| exp(i(ϕ + γ(|z|))) : a ≤ |z| ≤ b}, lγϕ(1,+∞) = lγϕ,

where ϕ ∈ R and γ(r) is a real-valued differentiable function on [a, b]. Following Balashov [3], we call lγϕ
a curve of regular rotation if the limit

lim
r→+∞

rγ′(r) = c, −∞ < c < +∞

exists. In the case γ(r) = c ln r, we obtain the logarithmic spiral lcϕ. Note that a curve of regular rotation
differs significantly from a ray if there exists no finite limit limr→+∞ γ(r).

In [5], the main theorem of the theory of entire functions of completely regular growth of finite
positive order was generalized; this theory was generalized to curves of regular rotation; this theory
was constructed by Levin and Pfluger (see [6, Chaps. 2, 3]); and, in [7], an analogue of this theorem was
proved for entire functions of zero order, which form an important and (in certain applications) popular
subclass of entire functions. It is easy to show that

f(z) =

+∞∏

n=1

(
1− z

an

)
, a = |a|eiα, |a| > 1, α ∈ [0, 2π),
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is an entire function of zero order whose roots have an angular υ-density with respect to the comparison
function υ(r) = ln r and, in the case of the incommensurability of the numbers α and π, they are
uniformly distributed over the angles (dΔ(ψ) = (Δ1/(2π)) dψ, Δ1 = 1/ ln |a|). By Theorem 1 from [7]
the following equality

ln f(z) =
1

2
Δ1 ln

2 r + o(ln r), r → +∞,

holds outside some C0-set of values z = reiϕ, 0 ≤ ϕ < 2π. In fact, in this case, the roots of f lie on the
logarithmic spiral lc0 (c = α/Δ1), and it is natural to study the behavior of ln f along the logarithmic
spirals lcϕ. Using results from [7] (see Theorem 1), outside some C0-set of values z = rei(ϕ+c ln r),
0 < ϕ < 2π, we obtain the asymptotic representation

ln f(z) =
1

2
Δ1(1 + ic) ln2 r + iΔ1(θ − π) ln r + o(ln r), r → +∞,

which is more informative than the behavior of ln f over rays.

The example of this special function f corroborates the importance of conducting studies of the
relationship between the distribution of roots along curves of regular rotation of entire functions of zero
order and the regular behavior at infinity of their logarithms along such curves. The theorems obtained
in the present paper generalize results contained in [7].

2. DEFINITIONS AND STATEMENT OF THE MAIN RESULTS

Let L be the class of continuously differentiable, positive, nondecreasing, unbounded functions υ on
[0,+∞) such that rυ′(r)/υ(r) → 0 as r → +∞. It is well known that, up to equivalent functions, the
class L coincides with the class of slowly increasing functions β(r) such that β(2r) ∼ β(r), r → +∞.
Also note that the functions υ ∈ L are of zero order, namely, limr→+∞(ln+ υ(r)/ ln r) = 0.

Let H0(υ) denote the class of entire functions of zero order such that the counting function
n(r) = n(r, 0, f) of their roots satisfies the condition n(r) = O(υ(r)), r → +∞. For 0 < β − α ≤ 2π,
we put

Dγ(r;α, β) =
⋃

α<ϕ≤β

lγϕ(1, r),

and nγ(r;α, β) is the number of roots f ∈ H0(υ) in the curvilinear sector Dγ(r;α, β).

We will say that the set of roots of a function f ∈ H0(υ) has an υ-density Δγ(α, β) along the curves
of regular rotation lγϕ if, for all α, β ∈ R, with the possible exception of a countable set of values of α
and β, the following limit exists:

lim
r→+∞

nγ(r;α, β)

υ(r)
= Δγ(α, β).

In this case, for a fixed ϕ1, the equality Δγ(ϕ)−Δγ(ϕ1) = Δγ(ϕ1, ϕ) defines on (ϕ1, ϕ1 + 2π], up to a
constant, a nondecreasing function Δγ(ϕ), which we will extend to the whole set R by the rule

Δγ(ϕ+ 2π)−Δγ(ϕ) = Δγ(ϕ1 + 2π)−Δγ(ϕ1), ϕ ∈ R.

A curve of regular rotation lγθ will be called ordinary for f ∈ H0(υ) if

lim
ε→0+

lim
r→+∞

nγ(r; θ − ε, θ + ε)

υ(r)
= 0.

All the other curves of regular rotation lγϕ will be called exceptional. If the roots of f ∈ H0(υ) have an
υ-density Δγ(α, β) along the curves of regular rotation lγϕ, then, from the monotonicity of the function
Δγ(ϕ), it follows that the set of exceptional curves of regular rotation lγϕ for f is at most countable.

MATHEMATICAL NOTES Vol. 110 No. 4 2021



534 ZABOLOTSKII et al.

Without loss of generality, we assume that f(0) = 1. By ln(1− z/an), an ∈ lγθ , we will denote the
univalent branch in the domain D(lγθ ) = C \ lγθ (|an|,+∞) of the multivalued functionLn(1− z/an) such
that ln(1− z/an)|z=0 = 0. Then, for

f(z) =

+∞∏

n=1

(
1− z

an

)
∈ H0(υ), υ ∈ L, (2.1)

we obtain

ln f(z) =
+∞∑

n=1

ln

(
1− z

an

)
, z ∈ C \

(+∞⋃

n=1

lγϕn
(rn,+∞)

)
,

where rn = |an| is the smallest modulus of the root f that lies on the curve of regular rotation lγϕn ,
ϕn = arg an ∈ [−π, π). For −π ≤ ψ < π, we denote by ĥ(θ;ψ) the 2π-periodic extension of the function
h(θ;ψ) = θ − ψ − π, θ ∈ (ψ,ψ + 2π), to R. For ordinary curves of regular rotation lγθ of a function
f ∈ H0(υ), υ ∈ L, we let

Hγ
f (θ) =

ˆ θ

θ−2π
(θ − ψ − π) dΔγ(ψ) =

ˆ π

−π
ĥ(θ;ψ) dΔγ(ψ),

Nγ(r) = Nγ(r, 0, f) =

ˆ
lγθ (1,r)

n(|w|)
w

dw =

ˆ r

1

n(t)(1 + itγ′(t))

t
dt.

Following Levin [6, p. 119], we will call the quantity

ρ∗(E) = lim
r→+∞

(
1

r

∑

|cj|≤r

rj

)

the upper linear density of the set E of disks {z : |z− cj| < rj}, j ∈ N, and the set of zero upper linear
density is called a C0-set.

Theorem 1. Let υ ∈ L, f ∈ H0(υ), and let the roots of f have υ-density Δγ(α, β) along the curves
of regular rotation lγϕ. Then there exists a C0-set E such that, for all the ordinary curves of regular
rotation lγθ of the function f ,

ln f(z) = Nγ(r) + iHγ
f (θ)υ(r) + o(υ(r)), z = rei(θ+γ(r)) /∈ E, r → +∞. (2.2)

Let Γm =
⋃m

j=1 l
γ
θj

, −π ≤ θ1 < θ2 < · · · < θm < θm+1 = π, be a finite system of curves of regular
rotation.

Remark 1. If the roots of f ∈ H0(υ) lie on Γm, then the existence of a υ-density Δγ(α, β) along the
curves of regular rotation lγϕ is equivalent to the relations (Δj ≥ 0, j = 1, . . . ,m)

n(r; θj) = Δjυ(r) + o(υ(r)), r → +∞,

where n(r; θj) is the counting function of the roots of f on lγθj . In this case,

Hγ
f (θ) =

m∑

j=1

Δjĥ(θ; θj), θ �= θj , j = 1, . . . ,m.

Theorem 2. Let υ ∈ L, let f ∈ H0(υ), let the roots of f lie on Γm, and let

G(θ) = G(θ; Γm) =

m∑

j=1

Δjĥ(θ; θj), Δj ≥ 0, θ ∈ [−π, π).
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If, for an arbitrary δ > 0,

θ ∈ [−π, π] \
m+1⋃

j=1

(θj − δ, θj + δ),

the following relation holds uniformly in:

ln f(rei(θ+γ(r))) = Nγ(r) + iG(θ)υ(r) + o(υ(r)), r → +∞, (2.3)

then the roots of f have an υ-density Δγ(α, β) along the curves of regular rotation lγθ .

Remark 2. It was shown in [8] that, in the general case of an arbitrary arrangement of the roots of
f ∈ H0(υ), υ ∈ L, the converse statement to Theorem 1 does not hold even in the case when the curves
of regular rotation are rays.

3. AUXILIARY RESULTS

In this section, we present six Lemmas that will be used in the proof of the theorems.

Lemma 1. Suppose that υ ∈ L, lγ−π is a curve of regular rotation, 0 < δ < 1, β(t)− γ(t) → 0 as
t → +∞, α(t) is a piecewise continuous function on [1,+∞), α(t) → 0 as t → +∞. Then, for
z = rei(ϕ+β(r)), −π < ϕ < π,

J1 =

ˆ
lγϕ(1,r)

α(|w|)υ(|w|)
w − z

dw = o(υ(r)), r → +∞, (3.1)

J2 = z

ˆ
lγϕ(r,+∞)

α(|w|)υ(|w|)
w(w − z)

dw = o(υ(r)), r → +∞, (3.2)

and relations (3.1), (3.2) hold uniformly with respect to ϕ ∈ [−π + δ, π − δ].

Proof. Let ε > 0 be an arbitrary number, and let K1,K2, . . . be positive constants. We put

η = e−δ/(4|c|), where c = lim
t→+∞

(tγ′(t)).

If c = 0, then we assume that η = 1/2.
For an arbitrary b > 0, we have [3],

lim
x→+∞

(γ(bx) − γ(x)) = c ln b,

it follows that, for t ∈ [ηr, r/η],

ϕ̃ = ϕ+ β(r)− γ(t) = ϕ+ (β(r)− γ(r)) + (γ(r)− γ(t)) → ϕ+ c ln b∗

as r → +∞, b∗ ∈ [η, 1/η]. For ϕ ∈ [−π + δ, π − δ], for r ≥ r1, we have

ϕ̃ ≥ (ϕ+ c ln b∗)− δ

2
≥ −π +

δ

2
− |c ln η| = −π +

δ

2
− |c| ln eδ/(4|c|) = −π +

δ

4
,

ϕ̃ ≤ (ϕ+ c ln b∗) +
δ

2
≤ π − δ

2
+ |c| ln 1

η
= π − δ

4
,

and hence |ϕ̃| ≤ π − δ/4. In view of the inequality |t+ reiθ| ≥ (t+ r) sin(δ1/2) (see, e.g., [9]), for
|θ| ≤ π − δ1, 0 < δ1 < 1, when t ∈ [ηr, r/η], we obtain

|w − z| = |tei(−π+γ(t)) − rei(ϕ+β(r))| = |t+ reiϕ̃| ≥ (t+ r) sin

(
δ

8

)
.

We have w = tei(−π+γ(t)), dw = (1 + itγ′(t))ei(−π+γ(t)) dt,

|J1| =
∣∣∣∣

(ˆ ηr

1
+

ˆ r

ηr

)
α(t)υ(t)(1 + itγ′(t))

w − z
ei(−π+γ(t)) dt

∣∣∣∣
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≤ K1

ˆ ηr

1

|α(t)|υ(t)
|z| − |w| dt+K2

ˆ r

ηr

|α(t)|υ(t) dt
(t+ r) sin(δ/8)

≤ K1υ(r)

r(1− η)

ˆ r

1
|α(t)| dt + K2υ(r)

r(1 + η) sin(δ/8)

ˆ r

1
|α(t)| dt < ευ(r), r ≥ r2,

because
´ r
1 |α(t)| dt = o(r), r → +∞.

We put α∗(r) = sup{|α(t)| : r ≤ t ≤ r/η}. Since

υ(r/η) ∼ υ(r), α∗(r) → 0,

ˆ +∞

r
|α(t)|υ(t)/t2 dt = o(υ(r)/r) as r → +∞,

it follows that

|J2| ≤ K3r

ˆ r/η

r

|α(t)|υ(t) dt
t(t+ r) sin(δ/8)

+K4r

ˆ +∞

r/η

|α(t)|υ(t)
t(t− r)

dt

≤ K5α
∗(r)

υ(r)

r

ˆ r/η

r
dt+K6r

ˆ +∞

r

|α(t)|υ(t)
t2

dt

< K7α
∗(r)υ(r) +

ε

2
υ(r) < ευ(r), r ≥ r3.

Lemma 1 is proved.

Let k ∈ N ∪ {0}, υ̃(t) = tυ′(t), υ(1) = 0, tγ′(t) = c+ ε(t), ε(t) → 0 as t → +∞. We put

Ak(τ, υ) =

ˆ τ

1
υ(t)tkei(k+1)γ(t) dt, Bk(τ, υ) =

ˆ +∞

τ
υ(t)t−k−2e−i(k+1)γ(t) dt.

Lemma 2. If υ ∈ L, then

Ak(τ, υ) =
1

1 + ic

(
υ(τ)τk+1ei(k+1)γ(τ)

k + 1
− 1

k + 1
Ak(τ, υ̃ )− iAk(τ, ε · υ)

)
, (3.3)

Bk(τ, υ) =
1

1 + ic

(
υ(τ)τ−k−1e−i(k+1)γ(τ)

k + 1
+

1

k + 1
Bk(τ, υ̃ )− iBk(τ, ε · υ)

)
. (3.4)

Proof. Integrating by parts, we obtain

Ak(τ, υ) =
υ(t)tk+1

k + 1
ei(k+1)γ(t)

∣∣∣∣
τ

1

− 1

k + 1

ˆ τ

1
tk+1ei(k+1)γ(t)(υ′(t) + i(k + 1)γ′(t)υ(t)) dt

=
υ(τ)τk+1ei(k+1)γ(τ)

k + 1

− 1

k + 1

ˆ τ

1
(tυ′(t))tkei(k+1)γ(t) dt− i

ˆ τ

1
υ(t)(tγ′(t))tkei(k+1)γ(t) dt

=
υ(τ)τk+1ei(k+1)γ(τ)

k + 1
− 1

k + 1
Ak(τ, υ̃ )− icAk(τ, υ)− iAk(τ, ε · υ),

from which follows (3.3). Relation (3.4) is obtained similarly. Lemma 2 is proved.

Lemma 3. Let υ ∈ L, w ∈ lγ−π, β(r)− γ(t) → 0 as r → +∞, 0 < δ < 1. Then, for z = rei(ϕ+β(r)), as
r → +∞, the following relations hold uniformly with respect to ϕ ∈ [−π + δ, π − δ]:

I1 =

ˆ
lγ−π(1,r)

υ(|w|) dw
z − w

= (1 + ic) lim
ε→0+

+∞∑

k=0

(−1)k+1

zk+1
Ak((1 − ε)r, υ) + o(υ(r)), (3.5)

I2 = z

ˆ
lγ−π(r,+∞)

υ(|w|) dw
w(z − w)

= (1 + ic) lim
ε→0+

+∞∑

k=0

(−1)k

z−k−1
Bk((1 + ε)r, υ) + o(υ(r)). (3.6)
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Proof. We have w = tei(−π+γ(t)), dw = (1 + itγ′(t))ei(−π+γ(t)) dt, tγ′(t) = c+ α(t),

I1 =

ˆ r

1

υ(t)(1 + itγ′(t))ei(−π+γ(t))

z(1− w/z)
dt

= lim
ε→0+

ˆ (1−ε)r

1

(
υ(t)(1 + ic+ iα(t))

z
ei(−π+γ(t))

+∞∑

k=0

(
w

z

)k)
dt

= (1 + ic) lim
ε→0+

+∞∑

k=0

(−1)k+1

zk+1

ˆ (1−ε)r

1
υ(t)tkei(k+1)γ(t) dt+ i

ˆ r

1

υ(t)α(t)ei(−π+γ(t))

z − w
dt

= (1 + ic) lim
ε→0+

+∞∑

k=0

(−1)k+1

zk+1
Ak((1 − ε)r, υ) + o(υ(r)), r → +∞,

because, by Lemma 1, uniformly with respect to ϕ ∈ [−π + δ, π − δ],

i

ˆ r

1

υ(t)α(t)ei(−π+γ(t))

z − w
dt = i

ˆ
lγ−π(1,r)

α(|w|)υ(|w|) dw
(1 + itγ′(t))(z − w)

= o(υ(r)), r → +∞.

Relation (3.6) is proved similarly.

Recall that a set E ⊂ R+ is called an E0-set if E is measurable and mes(E ∩ [0, r]) = o(r), r → +∞.
From [7, Lemmas 4 and 5], we obtain the following statement.

Lemma 4. Suppose that υ ∈ L, 0 < δ < 1, θ ∈ [−π, π), f ∈ H0(υ). Then there exists an E0-set E
such that

r

ˆ θ+δ

θ−δ

∣∣∣∣
f ′(reiϕ)

f(reiϕ)

∣∣∣∣ dϕ = O(υ(r))

(
δ + δ ln

(
1 +

1

δ

))
, r → +∞, r /∈ E.

For the entire function f defined by (2.1), we denote by f δ(z) the product f δ(z) =
∏+∞

n=1(1− z/a′n),
in which |a′n| = |an| and |arg a′n − arg an| < δ.

Lemma 5. Let υ ∈ L, f ∈ H0(υ), and let the following limit exist:

lim
r→∞

n(r, 0, f)

υ(r)
= Δ ≥ 0.

Then

∀ ε > 0 ∀ η > 0 ∃ δ > 0 ∃E ⊂ C, ρ∗(E) < η : ∀ z /∈ E
∣∣ln |f(z)| − ln |f δ(z)|

∣∣ < ε.

The proof of this lemma was given in [10].

Lemma 6. Suppose that υ ∈ L, f ∈ H0(υ), the roots of f have an υ-density Δγ(α, β) along the
curves of regular rotation lγϕ, K is a closed set of ordinary curves of regular rotation lγθ of f , and
the function f δ(z) is the same as above. Then

∀ ε > 0 ∀ z ∈ K ∃ δ > 0 ∃ r0 > 0: ∀ r ≥ r0 |arg f(z)− arg f δ(z)| < ευ(r).

Proof. Let us express f as the product of the following three functions:

f1(z) =
∏

|an|≤r/2

(
1− z

an

)
, f2(z) =

∏

|an|≥2r

(
1− z

an

)
, f3(z) =

∏

r/2<|an|<2r

(
1− z

an

)
.

Obviously,

|arg f(z)− arg f δ(z)|
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≤ |arg f1(z)− arg f δ
1 (z)|+ |arg f2(z)− arg f δ

2 (z)|+ |arg f3(z) − arg f δ
3 (z)|

≤ |ln f1(z)− ln f δ
1 (z)|+ |ln f2(z)− ln f δ

2 (z)|+ |arg f3(z) − arg f δ
3 (z)|. (3.7)

Since n(r) ≤ Δυ(r), r ≥ r1, 0 < Δ < +∞,
´ +∞
2r υ(t)/t dt ∼ υ(2r)/2r, r → +∞, it follows that,

for an arbitrary ε > 0, we can choose 0 < δ < 1/4 and r0 ≥ r1 so that 8Δδ < ε/3, υ(2r) < 2υ(r),´ +∞
2r υ(t)/t2 dt < υ(2r)/r for r ≥ r0.

For |arg a′n − arg an| = |argαn| < δ, |an| ≤ r/2, and |an| ≥ 2r, we have
∣∣∣∣
(a′n − an)z

an(a′n − z)

∣∣∣∣ ≤
r|1− eiαn |
||an| − r| ≤ δr

||an| − r| ≤ 2δ <
1

2
.

Using the inequality | ln(1− u)| ≤ 2|u| for |u| ≤ 1/2 (see [6, p. 87]), we obtain

|ln f1(z)− ln f δ
1 (z)| ≤

∑

|an|≤r/2

∣∣∣∣ln
(
1− z

an

)
− ln

(
1− z

a′n

)∣∣∣∣

=
∑

|an|≤r/2

∣∣∣∣ln
(
1− (a′n − an)z

an(a′n − z)

)∣∣∣∣ ≤ 2
∑

|an|≤r/2

∣∣∣∣
(a′n − an)z

an(a′n − z)

∣∣∣∣

≤ 4δn

(
r

2

)
≤ 4δΔυ(r) <

ε

3
υ(r), r ≥ r0. (3.8)

Since ˆ +∞

2r

dn(t)

t
≤
ˆ +∞

2r

n(t)

t2
dt ≤ Δ

ˆ +∞

2r

υ(t)

t2
dt ≤ Δυ(2r)

r
≤ 2Δ

υ(r)

r
,

we, similarly, have

|ln f2(z)− ln f δ
2 (z)| ≤ 2

∑

|an|≥2r

∣∣∣∣
(a′n − an)z

an(a′n − z)

∣∣∣∣ ≤ 2δr
∑

|an|≥2r

1

|an| − r
= 2δr

ˆ +∞

2r

dn(t)

t− r

≤ 4δr

ˆ +∞

2r

dn(t)

t
≤ 8δΔυ(r) <

ε

3
υ(r), r ≥ r0. (3.9)

Using the same arguments as in [5, pp. 352–353], we obtain the estimate

|arg f3(z)− arg f δ
3 (z)| <

ε

3
υ(r), z ∈ lγθ ∈ K, r ≥ r0. (3.10)

In view of (3.7), using (3.8)–(3.10), we conclude the proof of the assertion of Lemma 6.

4. PROOF OF THE MAIN RESULTS

Without loss of generality, we assume that υ(r) = 0 for 0 ≤ r ≤ 1.

Proof of Theorem 1. Suppose that the roots (an) of the function f ∈ H0(υ), υ ∈ L, are on the curves
of regular rotation lγ−π , n(r) = υ(r)(1 + α(r)), and α(r) → 0 as r → +∞. Then, for z = rei(ϕ+γ(r)),
−π < ϕ < π, we have (see [3])

ln f(z) =
+∞∑

n=1

ln

(
1− z

an

)
=

ˆ
lγ−π

ln

(
1− z

w

)
dn(|w|) = −z

ˆ
lγ−π

n(|w|)
w(w − z)

dw

=

ˆ
lγ−π(1,r)

n(|w|)
w

dw

+

ˆ
lγ−π(1,r)

n(|w|)
(

z

w(z − w)
− 1

w

)
dw +

ˆ
lγ−π(r,+∞)

n(|w|)
w(z − w)

dw
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= Nγ(r) +

ˆ
lγ−π(1,r)

n(|w|)
z − w

dw +

ˆ
lγ−π(r,+∞)

n(|w|)
w(z − w)

dw

= Nγ(r) + I1 + I2 + J1 + J2, (4.1)

where I1, I2, J1, J2 are the same as in Lemmas 1 and 3. By virtue of (3.1), (3.3), (3.5), we obtain

I1 + J1 = lim
ε→0+

+∞∑

k=0

(−1)k+1

zk+1

{
υ((1 − ε)r)(1− ε)k+1rk+1ei(k+1)γ((1−ε)r)

k + 1

− 1

k + 1
Ak((1− ε)r, υ̃ )− iAk((1− ε)r, α · υ)

}
+ o(υ(r))

= −υ(r) lim
ε→0+

+∞∑

k=0

(−1)k

k + 1
(1− ε)k+1 exp(i(k + 1)(−ϕ + γ((1− ε)r)− γ(r)))

− lim
ε→0+

+∞∑

k=0

(−1)k+1

(k + 1)zk+1
Ak((1− ε)r, υ̃ )− i

1 + ic

ˆ
lγ−π(1,r)

α(|w|)υ(|w|)
z − w

dw + o(υ(r))

= −υ(r) lim
ε→0+

ln(1 + (1− ε) exp(i(−ϕ+ γ((1 − ε)r)− γ(r)))) − lim
ε→0+

Σ1,ε + o(υ(r))

= − ln(1 + e−iϕ)υ(r) + o(υ(r)), r → +∞, (4.2)

because, by Lemma 3 from [7],

|Σ1,ε| =
∣∣∣∣
+∞∑

k=0

(−1)k+1

(k + 1)zk+1
Ak((1 − ε)r, υ̃ )

∣∣∣∣

≤
+∞∑

k=0

1

(k + 1)rk+1

ˆ r

1
υ̃(t)tk dt = o(υ(r)), r → +∞.

Similarly, from (3.2), (3.4), (3.6), and [7, Lemmas 3], we obtain

I2 + J2 = ln(1 + eiϕ)υ(r) + o(υ(r)), r → +∞. (4.3)

Using (4.1)–(4.3) for z = rei(ϕ+γ(r)), −π < ϕ < π, we can write

ln f(z) = Nγ(r) + (ln(1 + eiϕ)− ln(1− e−iϕ))υ(r) + o(υ(r))

= Nγ(r) + iϕυ(r) + o(υ(r)), r → +∞; (4.4)

here the latter relation holds uniformly with respect to ϕ ∈ [−π + δ, π − δ], 0 < δ < 1.
If the roots f ∈ H0(υ) are on the curves of regular rotation lγψ, −π < ψ < π, then, by turning the

plane clockwise by the angle (π + ψ), i.e., replacing in (4.4) the value of ϕ by ϕ− ψ − π, we see that, for
an arbitrary δ ∈ (0, 1), the following relation holds uniformly with respect to ϕ ∈ [ψ + δ, ψ + 2π − δ]:

ln f(rei(ϕ+γ(r))) = Nγ(r) + ih(ϕ;ψ)υ(r) + o(υ(r)), r → +∞. (4.5)

Now let the roots of f ∈ H0(υ) be placed on a finite system of curves of regular rotation
Γm =

⋃m
j=1 l

γ
θj

, −π ≤ θ1 < θ2 < · · · < θm < π = θm+1, and n(r; θj) = Δjυ(r) + o(υ(r)), r → +∞.
Let us express f as the product f = f1 · · · fm, where fj is an entire function with roots on the curves of
regular rotation lγθj , j = 1, . . . ,m. Then, for z ∈ D(Γm) = C \ Γm, we have

ln f(z) = ln f1(z) + · · ·+ ln fm(z)

and, using (4.5), for z = rei(ϕ+γ(r)), ϕ �= θj , j = 1, . . . ,m, we obtain

ln f(z) = Nγ(r) + i

m∑

j=1

Δjĥ(ϕ; θj)υ(r) + o(υ(r)), r → +∞.

MATHEMATICAL NOTES Vol. 110 No. 4 2021



540 ZABOLOTSKII et al.

Consider the case of an arbitrary placement of the roots of f ∈ H0(υ). We will employ the methods
used in a similar situation in [5, pp. 348–349] and [6, pp. 162–163]. Let us construct the integral sum

Sm(ϕ) =
m∑

j=1

Δj ĥ(ϕ;ψj), Δj = Δ(ψj+1)−Δ(ψj),

where −π ≤ ψ1 < ψ2 < · · · < ψm < ψm+1 = π. For any ε > 0, we can choose a δ > 0, so that, for
max1≤j≤m |ψj+1 − ψj| < δ, the following inequality holds:

|Hγ
f (ϕ) − Sm(ϕ)| < ε

6
. (4.6)

Now let us take numbers a′n so that |a′n| = |an|, and if ak ∈ lγψ, ψj ≤ ψj+1, then a′k ∈ lγψj
,

j = 1, 2, . . . ,m, and we construct the function f δ(z). Applying Lemmas 5 and 6, we see that, for
any ε > 0, η > 0, and a sufficiently small δ > 0, the inequality

∣∣ln |f(z)| − ln |f δ(z)|
∣∣ < ε

4
υ(r) (4.7)

holds for z /∈ E, ρ∗(E) < η/2, and the inequality

|arg f(z)− arg f δ(z)| < ε

6
υ(r) (4.8)

holds for z ∈ lγϕ, r ≥ r1, where lγϕ are the ordinary curves of regular rotation of the function f . The roots
of f δ(z) lie on a finite system of curves of regular rotation. Γm =

⋃m
j=1 l

γ
ψj

, n(r;ψj) = (1 + o(1))Δjυ(r),
r → +∞, and, as proved above, for arbitrary ε > 0, σ > 0, for r ≥ r2 and σ ≤ ϕ− ψj ≤ 2π − σ,
j = 1, 2, . . . ,m, the following inequalities are valid (z ∈ lγϕ):

|ln |f δ(z)| −Nγ(z)| < ε

4
υ(r), |arg f δ(z)− Sm(ϕ)| < ε

6
υ(r).

Combining this with (4.6)–(4.8), we see that, for z /∈ E, z ∈ lγϕ, σ ≤ ϕ− ψj ≤ 2π − σ, j = 1, 2, . . . ,m,

|ln |f(z)| −Nγ(z)| < ε

2
υ(r), |arg f(z)−Hγ

f (ϕ)υ(r)| <
ε

2
υ(r), r ≥ r0 = max{r1, r2},

i.e.,

|ln f(z)−Nγ(z)− iHγ
f (ϕ)υ(r)| < ευ(r). (4.9)

Performing a second partition of the interval [−π, π) by points ψ′
j , j = 1, 2, . . . ,m, so that the

inequalities σ ≤ θ − ψj ≤ 2π − σ and σ ≤ θ − ψ′
j ≤ 2π − σ cover the whole interval [−π, π], we can

see that (4.9) hold for z = rei(ϕ+γ(r)) /∈ E1, ρ∗(E1) < η. Further, just as in [6, p. 133], we construct a
C0-set outside which (2.2) holds. Theorem 1 is proved.

Proof of Theorem 2. Suppose that r /∈ Ω = {|an| : n ∈ N}, the an are the roots of f ∈ H0(υ),
Dγ(r;α, β) is a curvilinear sector, and

−π ≤ θ1 < · · · < θk0−1 < α < θk0 < · · · < θl0 < β < θl0+1 < · · · < θm < π.

Denote by

∂Dγ(r;α, β) = lγα(1, r) ∪K(r;α, β) ∪ (lγβ(1, r))
−1 ∪ (K(1;α, β))−1

the positive orientation of the boundary Dγ(r;α, β), where

K(t;α, β) = {z : |z| = t, α+ γ(t) ≤ arg z ≤ β + γ(t)}.
In view of (2.3) and the condition that the roots of f lie on the the curves of regular rotation lγθj ,
j = 1, . . . ,m, by the residue theorem, we have

2πinγ(r;α, β) =

ˆ
∂Dγ(r;α,β)

f ′(z)

f(z)
dz =

(ˆ
lγα(1,r)

+

ˆ
K(r;α,β)

−
ˆ
lγβ(1,r)

−
ˆ
K(1;α,β)

)
f ′(z)

f(z)
dz
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=

ˆ r

1

f ′(tei(α+γ(t)))

f(tei(α+γ(t)))
(1 + itγ′(t))ei(α+γ(t)) dt

−
ˆ r

1

f ′(tei(β+γ(t)))

f(tei(β+γ(t)))
(1 + itγ′(t))ei(β+γ(t)) dt

+

ˆ β

α

f ′(rei(ϕ+γ(r)))

f(rei(ϕ+γ(r)))
irei(ϕ+γ(r)) dϕ−

ˆ β

α

f ′(ei(ϕ+γ(1)))

f(ei(ϕ+γ(1)))
iei(ϕ+γ(1)) dϕ

= ln f(rei(α+γ(r)))− ln f(rei(β+γ(r))) + J(r;α, β) + C

= i(G(α) −G(β))υ(r) + J(r;α, β) + C + o(υ(r)), r → +∞, (4.10)

where

C = − ln f(ei(α+γ(1))) + ln f(ei(β+γ(1)))− i

ˆ β

α

f ′(ei(ϕ+γ(1)))

f(ei(ϕ+γ(1)))
ei(ϕ+γ(1)) dϕ.

Let

0 < δ < min

{
θk0 − α

2
,
β − θl0

2
,
θj+1 − θj

2

}
, j = k0, . . . , l0 − 1.

Then, by (2.3), we have
J(r;α, β)

=

(ˆ θk0−δ

α
+

l0−1∑

j=k0

ˆ θj+1−δ

θj+δ
+

l0∑

j=k0

ˆ θj+δ

θj−δ
+

ˆ β

θl0+δ

)
f ′(rei(ϕ+γ(r)))

f(rei(ϕ+γ(r)))
irei(ϕ+γ(r)) dϕ

= i(G(θk0 − δ) −G(α))υ(r) + i

l0−1∑

j=k0

(G(θj+1 − δ) −G(θj + δ))υ(r)

+ i(G(β) −G(θl0 + δ))υ(r) + Σδ + o(υ(r)), r → +∞, (4.11)

where

Σδ =

l0∑

j=k0

ˆ θj+δ

θj−δ

f ′(rei(ϕ+γ(r)))

f(rei(ϕ+γ(r)))
irei(ϕ+γ(r)) dϕ.

By Lemma 4, there exists an E0-set of Ej such that
∣∣∣∣
ˆ θj+δ

θj−δ

f ′(rei(ϕ+γ(r)))

f(rei(ϕ+γ(r)))
irei(ϕ+γ(r)) dϕ

∣∣∣∣ ≤ r

ˆ θj+δ

θj−δ

∣∣∣∣
f ′(reiθ)

f(reiθ)

∣∣∣∣ dθ

= O(υ(r))

(
δ + δ ln

(
1 +

1

δ

))
, r → +∞, r /∈ Ej , j = k0, . . . , l0,

and hence

Σδ = O(υ(r))

(
δ + δ ln

(
1 +

1

δ

))
, r → +∞, r /∈ E =

l0⋃

j=k0

Ej . (4.12)

Letting δ tend to zero, from (4.10)–(4.12), we obtain

nγ(r;α, β) =
1

2π

l0∑

j=k0

(G(θj − 0)−G(θj + 0))υ(r) + o(υ(r)), r → +∞, r /∈ E,

where E is some E0-set. If r ∈ E, then it follows from the definition of E that there exist r′, r′′ such that
r/2 < r′ < r < r′′ < 2r and r′ /∈ E, r′′ /∈ E. Since

nγ(r′;α, β)

υ(r′)

υ(r′)

υ(r)
≤ nγ(r;α, β)

υ(r)
≤ nγ(r′′;α, β)

υ(r′′)

υ(r′′)

υ(r)
,
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υ(r′) ∼ υ(r′′) ∼ υ(r) as r → +∞ and G(θj − 0)−G(θj + 0) = 2πΔj , it follows that

Δγ(α, β) = lim
r→+∞

nγ(r;α, β)

υ(r)
=

l0∑

j=k0

Δj,

which proves Theorem 2.
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