HUMAN PHYSIOLOGY (normal) LECTURE 15. The Physiology of Digestion

Lyubomyr Vovkanych Department of Anatomy & Physiology LSUPhC

Introduction

Digestion is defined as the process by which **food is broken down** into **simple chemical substances** that can be **absorbed** and used as nutrients by the body

Functions of digestive system:

- Ingestion or **consumption** of food substances
- Mechanical processing (by muscles contraction) and chemical (enzymatic) breakdown of food
- Secretion of necessary enzymes and other substances for digestion
- **Absorption** of the digestive products (nutrients)
- **Excretion** removal of waste products from body

Control of Digestive Function

Neural mechanisms control

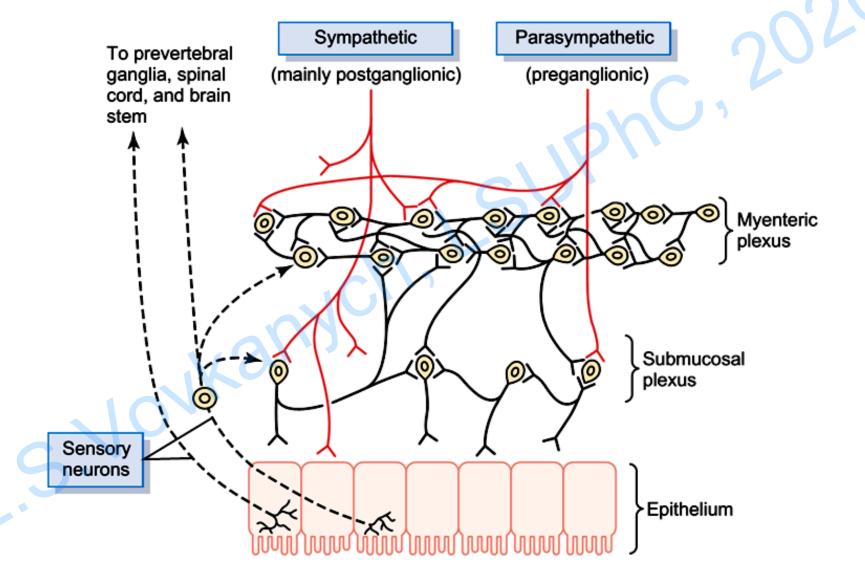
- short reflexes are responsible for local reflexes (stretch receptors and chemoreceptors), control small segments of digestive tract, operate entirely outside of CNS control
- long reflexes higher level control of digestive and glandular activities, control large-scale peristaltic waves, involve interneurons and motor neurons in CNS

Hormonal mechanisms

- at least 18 peptide hormones that affect most aspects of digestive function
- are produced by enteroendocrine cells in digestive tract
- reach target organs after distribution in bloodstream

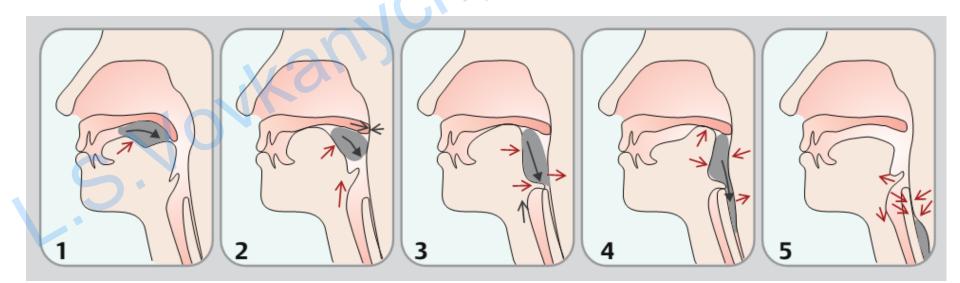
Some Hormones of GI Tract Gastrin CCK Secretin GIP Motilin Fundus Antrum Duodenum Jejunum lleum Colon

Nerve Supply to Gastrointestinal Tract


Enteric nervous system (contain nerve cell bodies) is present within the wall of gastrointestinal tract, formed by

- Myenteric (Auerbach) plexus mainly regulate the movements of GI tract.
- Submucosal (Meissner) plexus mainly regulate the secretory functions of GI tract
- Enteric nervous system is controlled by extrinsic nerves from autonomic nervous system

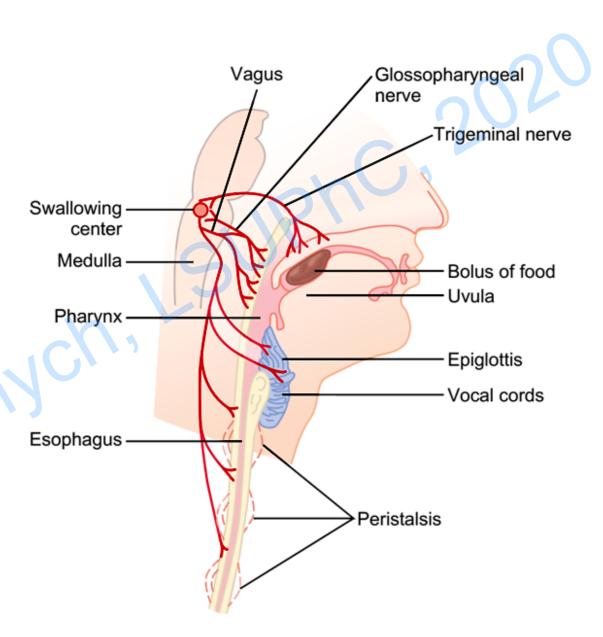
Nerve Supply to Gastrointestinal Tract


- Preganglionic sympathetic nerve fibers to GI tract arise from T5 to L2, terminate in the celiac and mesenteric ganglia.
- Postganglionic fibers from these ganglia are distributed throughout the GI tract
- Sympathetic nerve fibers inhibit the movements and decrease the secretions of GI tract
- Preganglionic parasympathetic nerve fibers to mouth and salivary glands pass through facial and glossopharyngeal nerves
- Preganglionic parasympathetic nerve fibers to esophagus, stomach, small intestine and upper part of large intestine pass through vagus nerve
- Preganglionic nerve fibers to lower part of large intestine arise from S2-S4
- Parasympathetic nerve fibers accelerate the movements and increase the secretions of GI tract

Neural Control of the GI Tract

Mechanical processing

- In the mouth, food is mixed with saliva and propelled into the esophagus
- Chewing (mastication) breaks up large food particles and mixes the food with the secretions of the salivary glands – the bolus is formed
- Swallowing (deglutition) is a reflex starts with a wave of involuntary contraction in the pharyngeal muscles that pushes the material into the esophagus


Swallowing

 Voluntary stage, which initiates the swallowing process

Pharyngeal

 (involuntary) stage passage of food
 through the pharynx
 into the esophagus

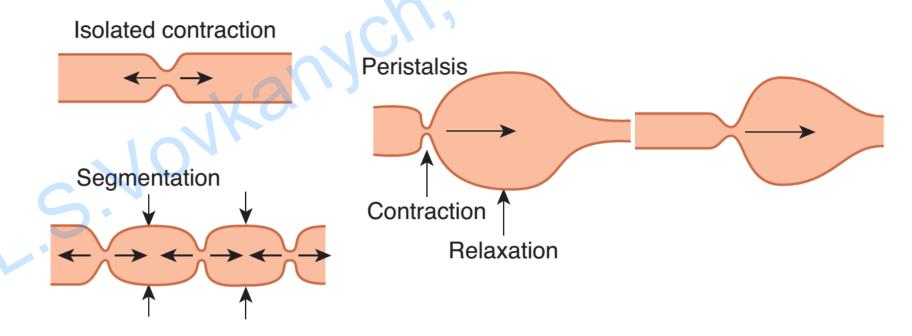
 Esophageal stage, involuntary phase that transports food from the pharynx to the stomach

The Movement of Digestive Materials

Movements (motility) are performed by muscular layers of digestive tract, which consist of **visceral smooth muscle** tissue (except for the oral cavity, pharynx and external sphincter of rectum)

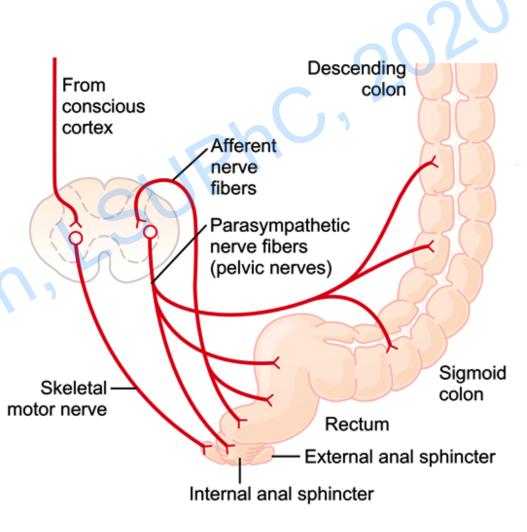
Along digestive tract smooth muscles has rhythmic cycles of activity controlled by **pacesetter** cells, located in muscularis mucosae and muscularis externa

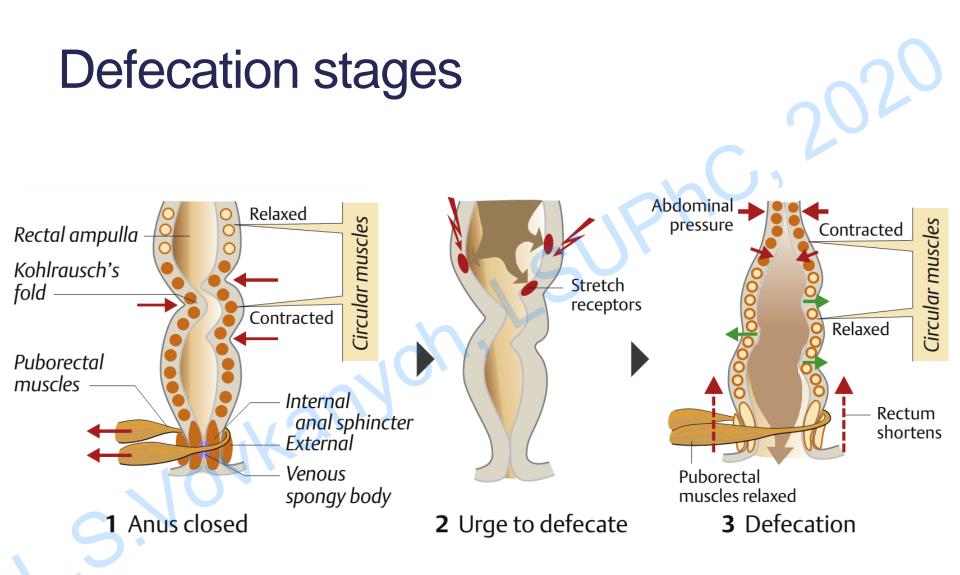
The smooth muscles are controlled by **Enteric Nervous System** (ENS), mainly by the **myenteric plexus** (plexus of Auerbach)


ENS is **innervated** primarily by **parasympathetic** division of ANS

Patterns of gastrointestinal motility (in GI tract):

- Isolated contraction
- Segmentation
- Peristalsis


The Movement of Digestive Materials


- Isolated contractions separates some parts of contents, is typical for sphyncters
- Segmentation cycles of contraction fragment the bolus or chyme, mix contents with intestinal secretions
- **Peristalsis** consists of waves of muscular contractions, which move a bolus or chyme along the length of the digestive tract

Defecation

- Is initiated by defecation reflexes
- Intrinsic reflex mediated by the local enteric nervous system
- It usually must be intensified by a parasympathetic defecation reflex (sacral segments of the spinal cord)
- It greatly intensifies the peristaltic waves as well as relaxes the internal anal sphincter
- External anal sphincter is relaxed by centers of spinal cord, controlled by higher centers of brain

Secretion

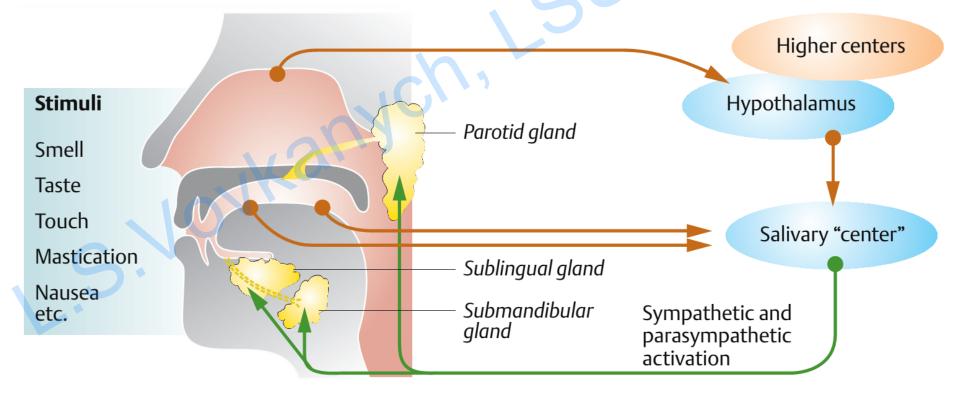
Active process of synthesis, transport and excretion into lumen the components of secretory product, which form the secretions It is the result of the secretory glands activity

The main components of secretes (digestive juices) are:

- water
- organic substances
 - digestive enzymes in most areas of the alimentary tract, from the mouth to the distal end of the ileum
 - mucous from the mouth to the anus, necessary for lubrication and protection of all parts of the alimentary tract
- inorganic compounds (ions)

Most digestive secretions are formed only **in response** to the presence of food in the alimentary tract

The quantity secreted in each segment of the tract is almost exactly the amount needed for proper digestion


Properties and Composition of Saliva

- The saliva is secreted by three pairs of major (larger) salivary glands and some minor (small) salivary glands
- Volume: 1.0-1.5 L per day
- pH is **alkaline**
- Has antimicrobial properties (lysozyme, Immunoglobulin IgA, etc.)
- Mucin protects the mouth by lubricating the mucus membrane of mouth

Enzyme	Source of secretion	Activator	Action
Salivary amylase	All salivary glands	CI-	Converts starch into maltose
Maltase	Major salivary glands	CI-	Converts maltose into glucose
Lingual lipase	Lingual glands		Triglycerides of milk fat into fatty acids and diacylglycerol

Nerve Regulation of Salivary Glands

- Stimulation of parasympathetic fibers of salivary glands causes secretion of saliva with large quantity of water
- Stimulation of sympathetic fibers causes secretion of saliva, which is thick and rich in organic constituents

Functions of Stomach

- Mechanical Function
 - storage function (for 3 to 4 hours)
 - formation of chyme (by peristaltic movements)
- **Digestive** Function (gastric juice)
- Protective Function (gastric juice)
- Gastric juice is a mixture of secretions from different gastric glands

Types of Gastric Glands

Type of gland	Localization	Type of cells	Secretory products
Fundic glands body and fundus		Chief cells (CC)	Pepsinogen Rennin Lipase Gelatinase
		Parietal cells	Hydrochloric acid
		Mucus cells (MC)	Mucin
		Enterochromaffin cells (EC)	Serotonin
Pyloric glands pyloric part	MC, EC	Mucin Serotonin	
5.		G cells	Gastrin
Cardiac glands	cardiac region	CC, MC, EC	see above

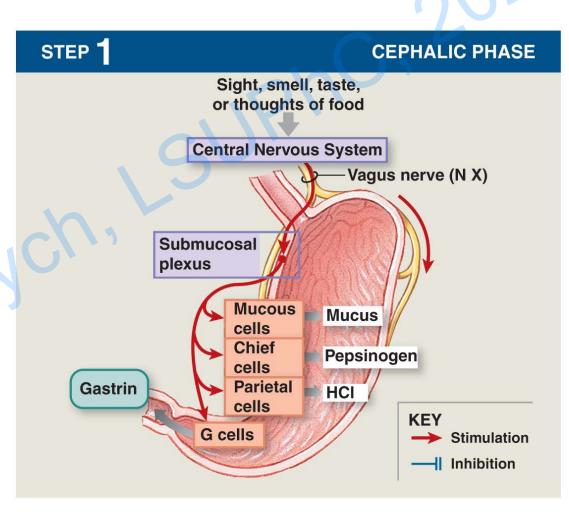
Gastric Juice

- Volume: 1.2-1.5 L/day
- Reaction: highly acidic (pH of 0.9 to 1.2 during food digestion)

Enzyme	Activator	Substrate	Action
Pepsin	Hydrochloric acid	Proteins	Proteoses, peptones and polypeptides
Gastric lipase	Acid medium	Triglycerides of butter	Fatty acids and glycerols
Gastric amylase	Acid medium	Starch	Dextrin and maltose (negligible action)
Gelatinase	Acid medium	Gelatin and collagen of meat	Peptides

Mucin:

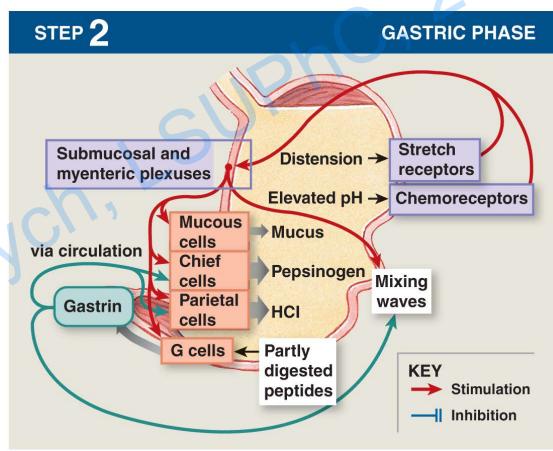
- protects the stomach wall from irritation or mechanical injury
- prevents the digestive action of pepsin on the wall of the stomach


Regulation of Gastric Secretion

Gastric secretion occurs in **three** different phases:

- Cephalic phase
- Gastric phase
- Intestinal phase

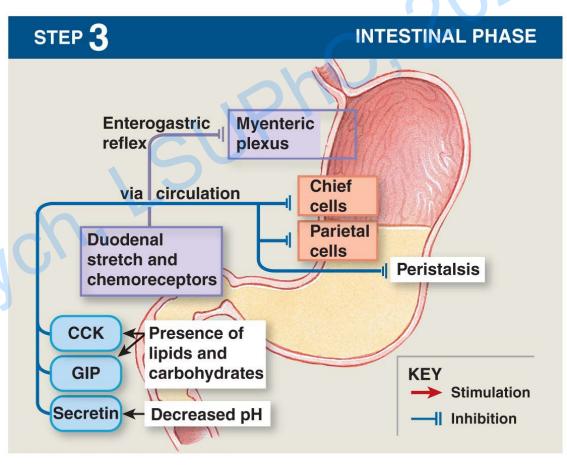
Cephalic phase


- short phase (minutes)
- neural mechanism involved vagus nerve and submucosal plexus
- hormonal stimulation by gastrin
- stimulation of secretion

Regulation of Gastric Secretion

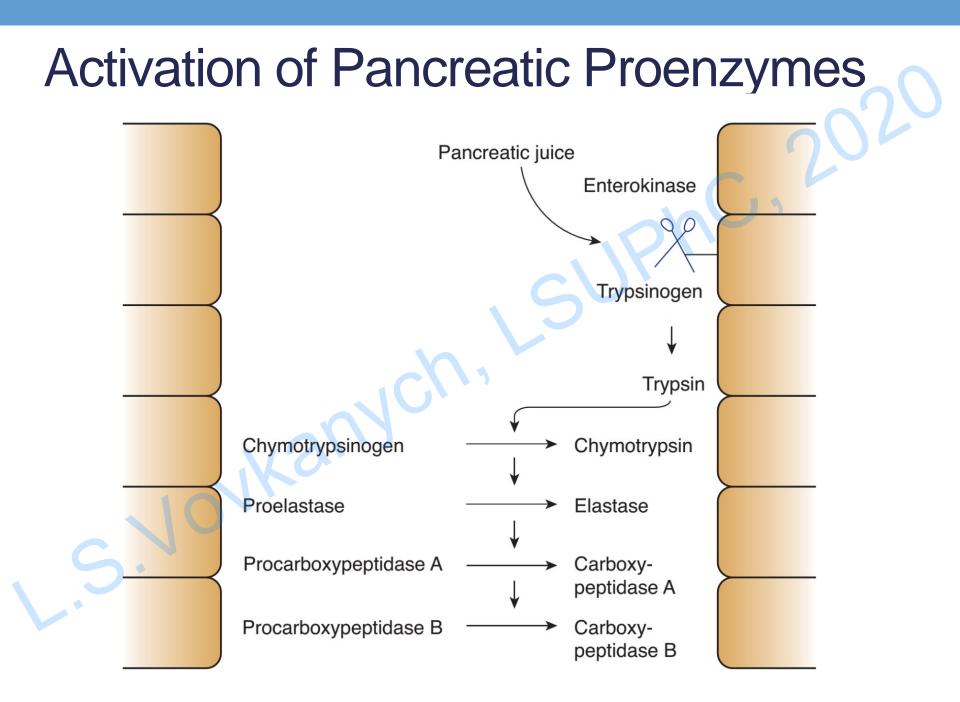
Gastric phase

- long phase (3-4 hr)
- neural local mechanisms, activated by stretch receptors and chemoreceptors
- hormonal stimulation by gastrin
- increase secretion of HCI and pepsinogen;
- increased motility


Regulation of Gastric Secretion

Intestinal phase

- **long** (3-4 hr)
- neural local reflexes stimulated by distention of duodenum
- hormonal inhibition of gastric secretion by Secretin,

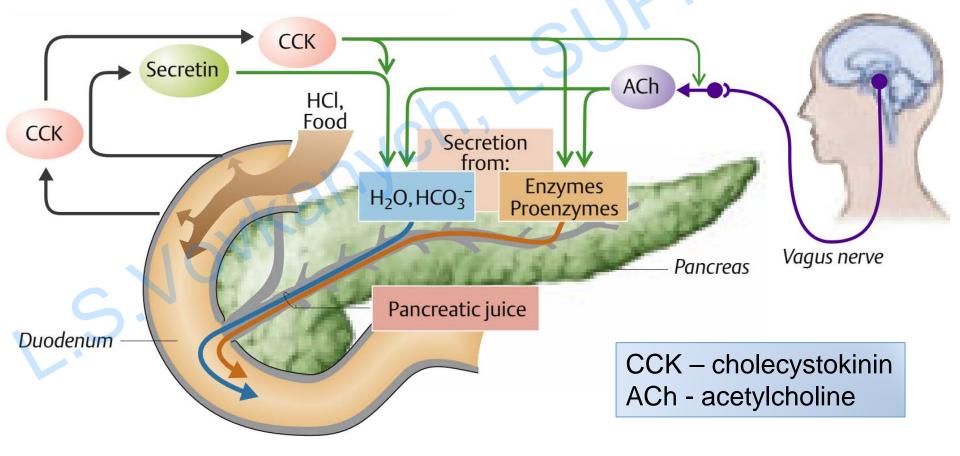

Cholecystokinin (CCK) and Gastric inhibitory peptide (GIP)

- inhibition of HCL and pepsinogen production;
- reduction of motility

Properties and Composition of Pancreatic Juice

- Volume: 0.5 to 0.8 L/day
- Reaction: highly alkaline (pH of 8 to 8.3)
- Bicarbonate content is very high in pancreatic juice
- Plays an important role in the digestion of proteins and lipids, nucleases are also present, has mild digestive action on carbohydrates
- Major proteolytic enzymes of pancreatic juice are trypsin and chymotrypsin
- Trypsin is secreted as inactive trypsinogen, activated by enterokinase (secreted by the brushbordered cells of duodenal mucus membrane)
- Many other enzymes also are secreted as proenzymes (inactive) and are activated in the lumen

Digestive Enzymes of Pancreatic Juice


Enzyme	Activator	Substrate	End products
	C		
Trypsin	Enterokinase Trypsin	Proteins	Polypeptides
Chymotrypsin	Trypsin	Proteins	Polypeptides
Carboxypeptidases	Trypsin	Polypeptides	Amino acids
Elastase	Trypsin	Elastin	Amino acids
Collagenase	Trypsin	Collagen	Amino acids
Nucleolytic enzymes			
Nucleases	Trypsin	RNA and DNA	Mononucleotides

Digestive Enzymes of Pancreatic Juice

Enzyme	Activator	Substrate	End products	
Lypolitic enzymes				
Pancreatic lipase	Alkaline medium	Triglycerides	Monoglycerides and fatty acids	
Cholesterol ester hydrolase	Alkaline medium	Cholesterol ester	Cholesterol and fatty acids	
Phospholipase A	Trypsin	Phospholipids	Lysophospholipids	
Phospholipase B	Trypsin	Lysophospholi pids	Phosphoryl choline and free fatty acids	
Amylolytic enzymes				
Pancreatic amylase		Starch	Dextrin and maltose	

Regulation of pancreatic secretion

 Secretion of pancreatic juice is regulated by both nervous and hormonal factors

Regulation of Pancreatic Secretion

Stages (phases) of pancreatic secretion

- Cephalic phase (stimulation by vagal nerve endings)
- Gastric phase
 - when food enters the stomach, gastrin is secreted from stomach, it stimulates the pancreatic secretion
- Intestinal phase
 - when the chyme enters the intestine many hormones are released

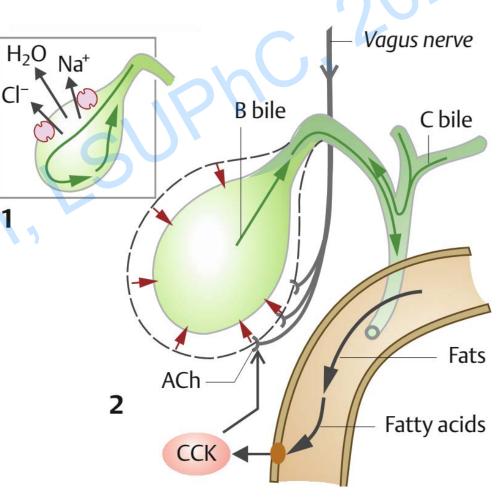
some hormones stimulate the pancreatic secretion (Secretin, Cholecystokinin) and some hormones inhibit the (Pancreatic polypeptide, Somatostatin) pancreatic secretion

Bile Secretion (Liver and Gallbladder)

- Properties of bile
- Volume: 0.8 to 1.2 L/day
- Reaction: Alkaline (pH 8 to 8.6)
- Bile is secreted by hepatocytes
- It contains large quantity of bile acids, bile pigments, cholesterol, lecithin and fatty acids
- Sodium, bicarbonate and water are added to bile when it passes through the ducts
- Most of the bile from liver enters the gallbladder, where it is stored
- During the storage, the volume of bile decrease, the concentration of substances increase, mucin is added into bile

Main Organic Components of Bile

Bile salts are required for digestion and absorption of fats in the intestine


- Emulsification of fats (bile salts emulsify the fats by reducing the surface tension due to their detergent action, in emulsion fats can be easily digested by lipolytic enzymes)
- Absorption of fats (bile salts combine with fats and make complexes of fats called micelles)
- Stimulation of the secretion of bile from liver

Bile pigments (bilirubin and biliverdin) are the excretory products in bile

Bile pigments are formed during the breakdown of hemoglobin

Regulation of Bile Secretion and Ejection from Gallbladder

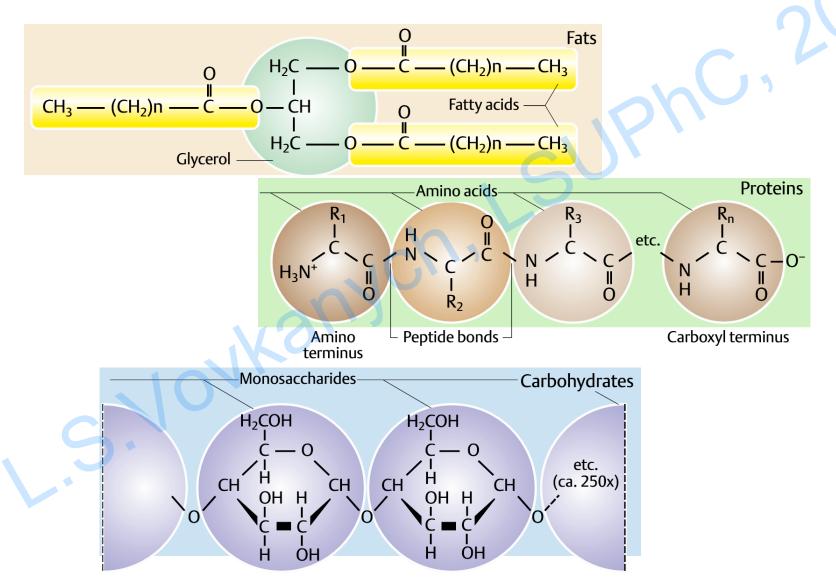
- Bile secretion is a continuous process
- Substances which increase the secretion: Acetylcholine, Secretin, Cholecystokinin etc.
- Contraction of gallbladder is stimulated by
 parasympathetic nerve (vagus) and cholecystokinin (CCK, secreted in intestine)
- Increases the release of bile: Bile salts, Fatty acids, Amino acids etc.

Secretion of Small Intestine

Volume: 1.8-2.0 L/day

- Reaction: alkaline (pH 8.3)
- Intestinal juice (Succus entericus) has strong enzymatic activity:
- Peptidases convert peptides into amino acids
- Amylolytic enzymes convert the disaccharides (lactose, sucrose and maltose) into two molecules of monosaccharides
- Intestinal lipase acts on triglycerides and converts them into fatty acids
- Enterokinase activates trypsinogen into trypsin
- **Mucus** present in the succus entericus protects the intestinal wall from the acid chyme
- **Defensins** secreted by paneth cells of intestinal glands are the antimicrobial peptides

Digestive Enzymes of Intestinal Juice


Enzyme	Substrate	End products
Enterokinase	Trypsinogen	Trypsin
Aminopeptidases	Polypeptides	Free terminal amino acid
Carboxypeptidases	, SU	Free terminal amino acid
Endopeptidases		Two amino acids
Maltase	Maltose, maltotriose, α-dextrins	Glucose
Lactase	Lactose	Galactose and glucose
Sucrase	Sucrose	Fructose and glucose
Nucleases	Nucleic acids	Pentoses and purine and pyrimidine bases
Intestinal lipase	Triglycerides	Fatty acids

Regulation of Secretion of Small Intestine

- Local reflexes, stimulated by chyme, entering the small intestine, stimulates which play an important role in increasing the secretion of intestinal juice
- Chyme also stimulates the secretion of secretin and cholecystokinin, which promote the secretion of intestinal juice

JK31

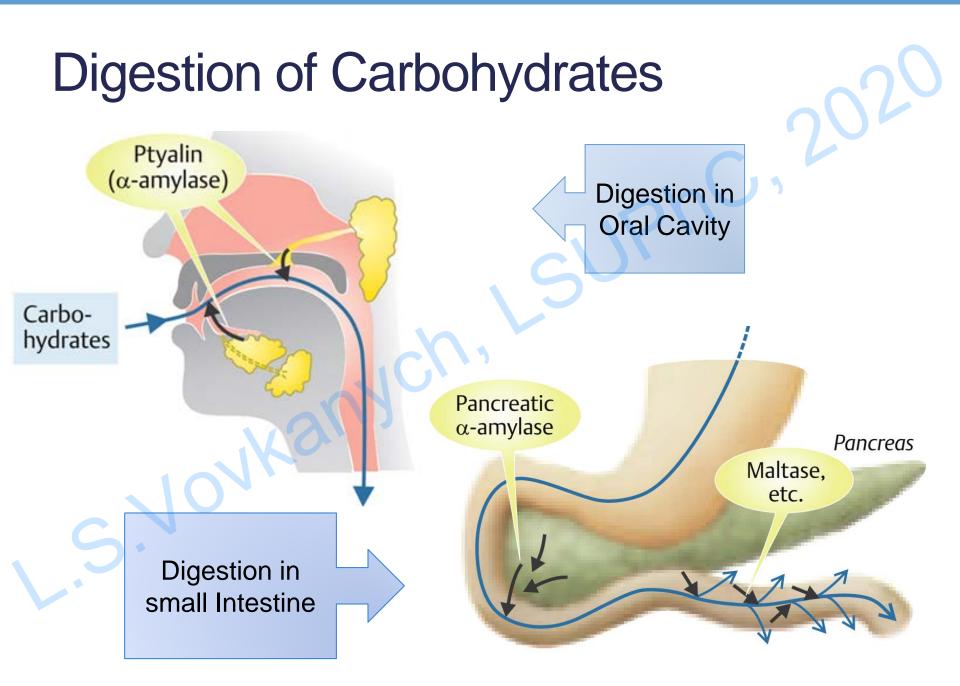
Chemical Structure of Food Components

Digestion of Carbohydrates

Human diet contains three types of carbohydrates:

- polysaccharides glycogen, amylose and amylopectin, which are in the form of starch
- disaccharides sucrose (glucose + fructose), lactose (glucose + galactose)
- monosaccharides mostly glucose and fructose

```
      Starches
      Ptyalin (saliva)–20–40%


      Pancreatic amylase–50–80%

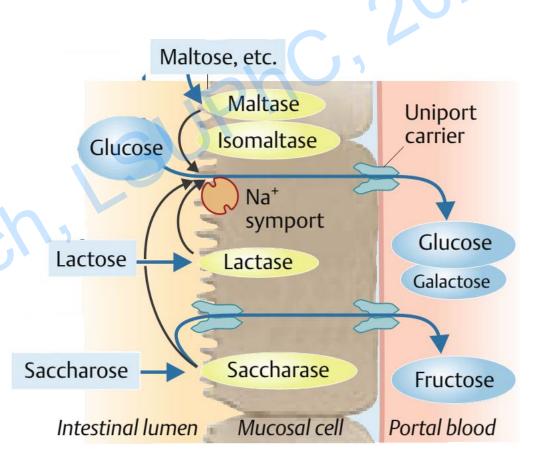
      Maltose and 3 to 9 glucose polymers
      Lactose

      Maltase and α-dextrinase
      Sucrose

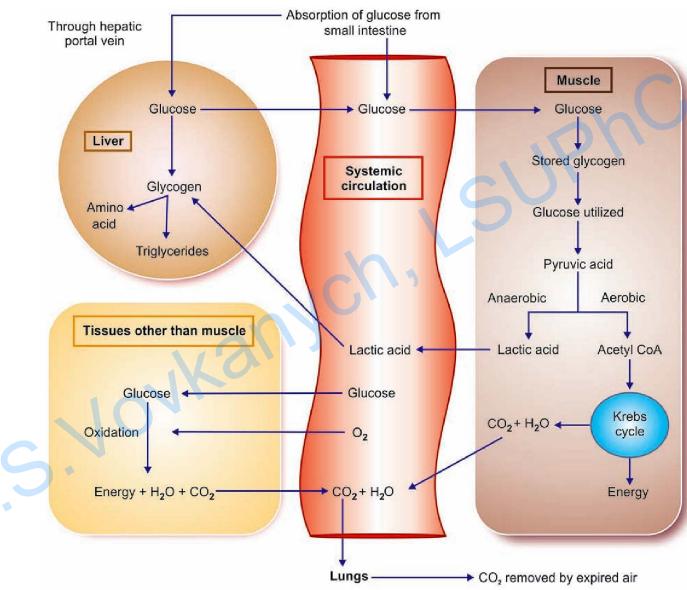
      Intestine)
      Galactose

      Fructose
```


Digestion of carbohydrates

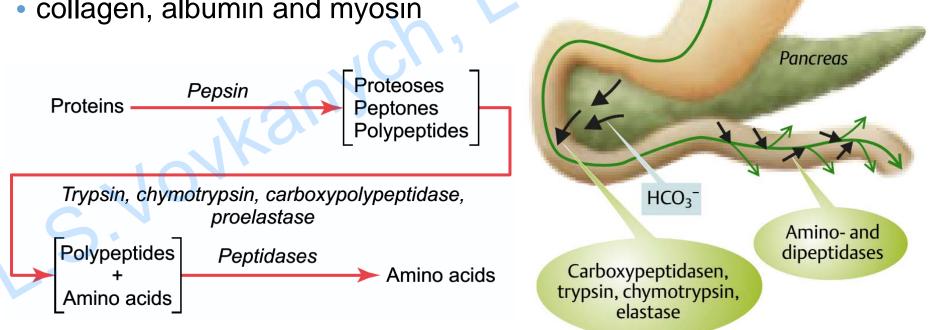

Area	Juice	Enzyme	Substrate	End product
Mouth	Saliva	Salivary amylase	Polysaccharides	Disaccharides – dextrin and maltose
Stomach	Gastric juice	Gastric amylase	Weak amylase	The action is negligible
Small intestine	Pancreatic juice	Pancreatic amylase	Polysaccharides	Disaccharides
S.	Intesinal juice	Sucrase Maltase Lactase Dextrinase	Sucrose Maltose Lactose Dextrin, maltose and maltriose	Glucose and fructose Glucose Glucose and galactose Glucose

Absorption of Carbohydrates


Into epithelial cells the **glucose** and **galactose** are transported by means of sodium cotransport

From the epithelial cell, glucose is absorbed into the portal vein by facilitated diffusion

Fructose is absorbed into blood by means of facilitated diffusion


Metabolism of Carbohydrates

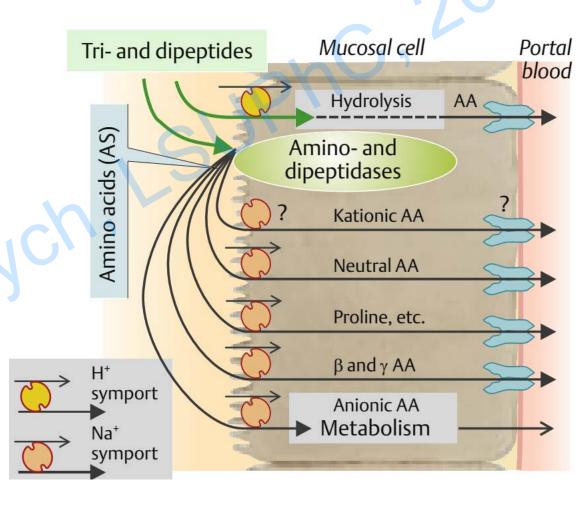
Digestion of Proteins

Proteins present in food are:

- gluten (glutenin and gliadin)
- casein, lactalbumin, albumin and myosin
- albumin and vitellin
- collagen, albumin and myosin

Protein

HCI


Pepsins


Digestion of Proteins

Area	Juice	Enzyme	Substrate	End product	
Mouth	Saliva	No proteolytic enzymes			
Stomach	Gastric juice	Gastric amylase	Proteins	Proteoses, peptones, large polypeptides	
Small intestine	Pancreatic juice	Trypsin, Chymotrypsin	Proteoses Peptones	Dipeptides Tripeptides Polypeptides	
		Carboxypeptidases	Dipeptides Tripeptides Polypeptides	Amino acids	
S.	Intesinal juice	Dipeptides Tripeptides Amyno peptides	Dipeptides Tripeptides Polypeptides	Amino acids	

Absorption of Amino Acids

- Amino acids are absorb from small intestine
- Amino acids (AA) are transported by a number of specific carriers by symport with Na⁺ or H⁺
- Dipeptides and tripeptides can be absorbed as intact molecules by a symport carrier
- Absorption of amino acids is faster in duodenum and jejunum and slower in ileum

Digestion of Lipids

- Lipids are mostly consumed in the form of neutral fats (triglycerides) and small quantities of cholesterol and cholesterol esters
- Dietary fats are classified into two types:
 - Saturated fats (triglycerides formed from only saturated fatty acids.)
 - Unsaturated fats (unsaturated fatty acids)
 - Polyunsaturated fats belong to the family of essential fatty acids
 - Omega-3

Omega-6

(Bile + Agitation) Fat — Fat

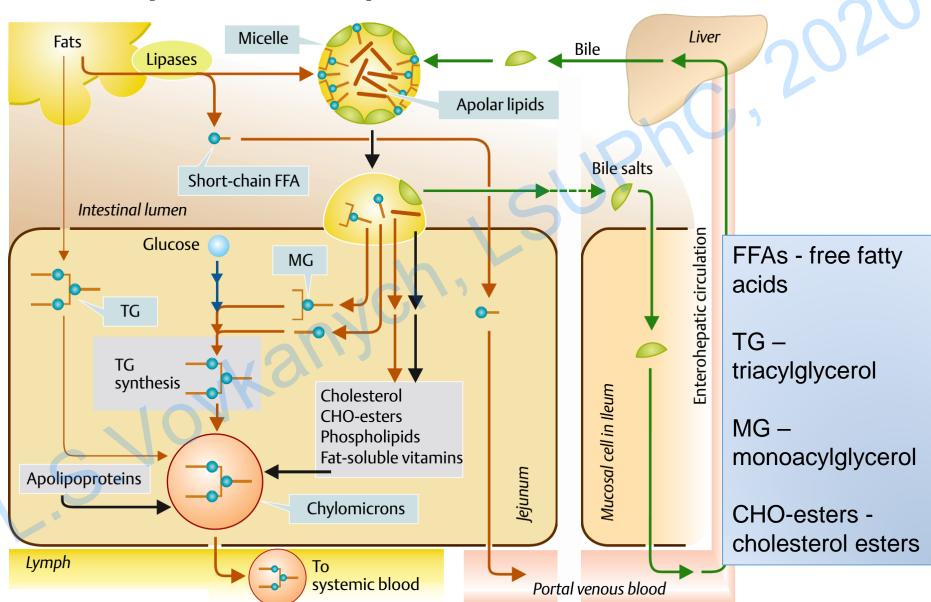
Pancreatic lipase

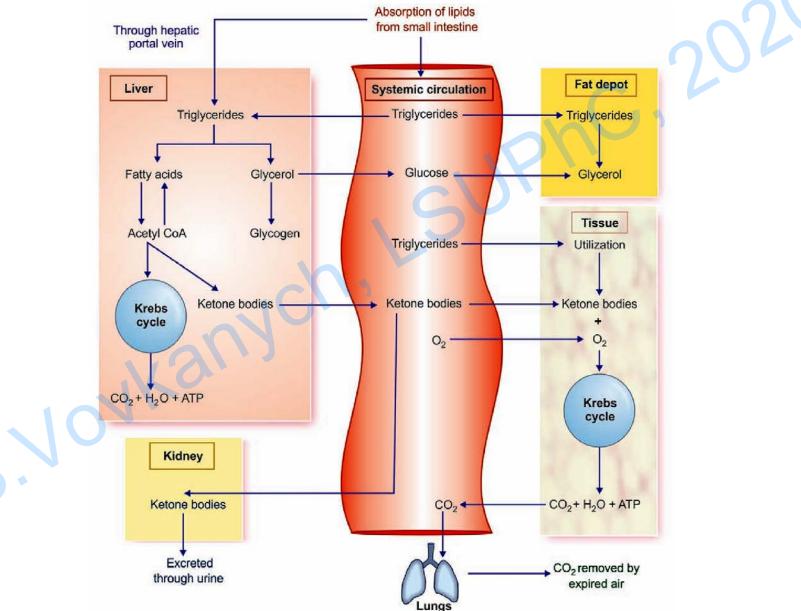
Emulsified fat

Fatty acids and 2-monoglycerides

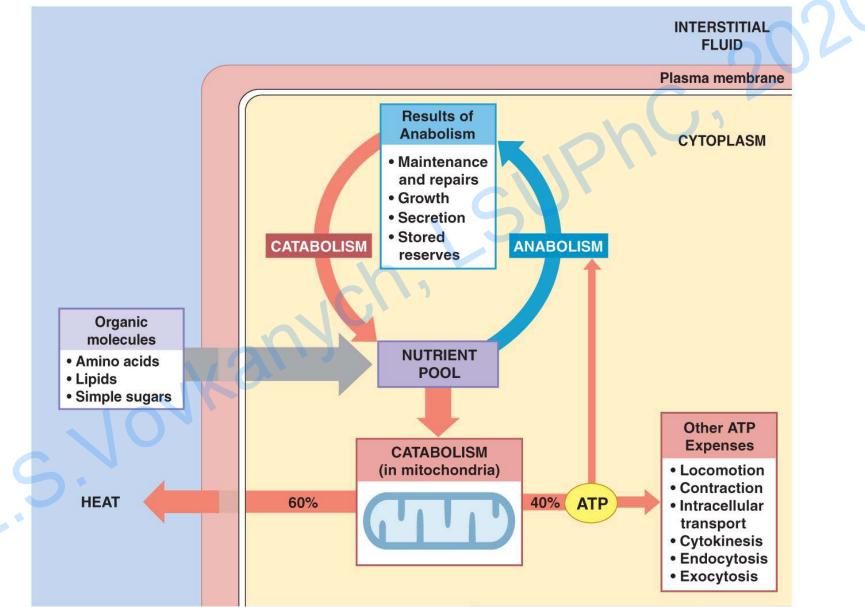
Digestion of Lipids

Area	Juice	Enzyme	Substrate	End product
Mouth	Saliva	Lingual lipase	Triglycerides	Fatty acid 1, 2- diacylglycerol
Stomach	Gastric juice	Gastric lipase (weak lipase)	Triglycerides	Fatty acids Glycerol
Small intestine	Pancreatic juice	Pancreatic lipase	Triglycerides	Monoglycerides Fatty acid
		Phospholipases	Phospholipids Lysophosphol ipids	Lysophospholipi ds Phosphoryl choline Free fatty acids
	Intesinal juice	Intestinal lipase	Triglycerides	Fatty acids Glycerol (weak action)


Digestion of Lipids


Absorption of Lipids

- In the small intestine 2-monoacylglycerols, long-chain free fatty acids and other lipids aggregate with bile salts to spontaneously form micelles
- Micelles enter the cells of intestinal mucosa by simple diffusion
- In the mucosal cells, most of the monoglycerides are converted into triglycerides
- Triglycerides and cholesterol esters are coated with a layer of protein, cholesterol and phospholipids to form the particles called chylomicrons
- Chylomicrons enter the lymph vessels (because of the large size) and then are transferred into blood from lymph
- Fatty acids containing less than 10 to 12 carbon atoms enter the portal blood from mucosal cells
- Most of the fats are absorbed in the upper part of small intestine


Absorption of Lipids

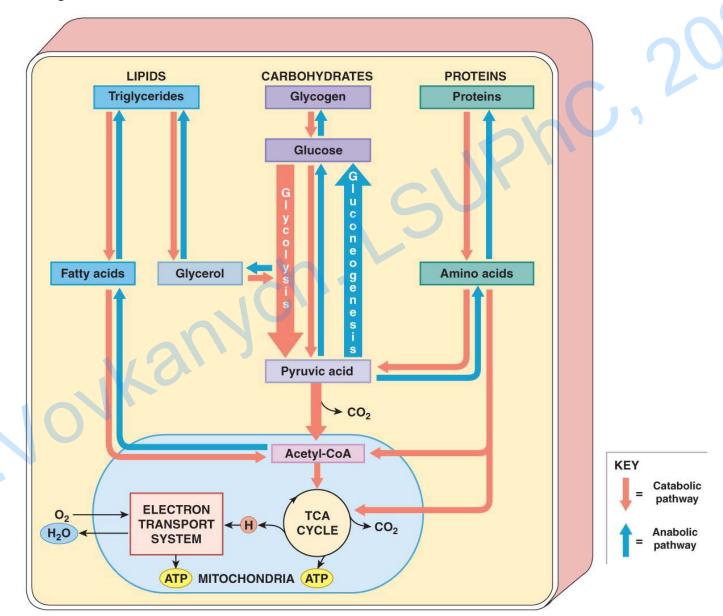
Metabolism of Lipids

Metabolism

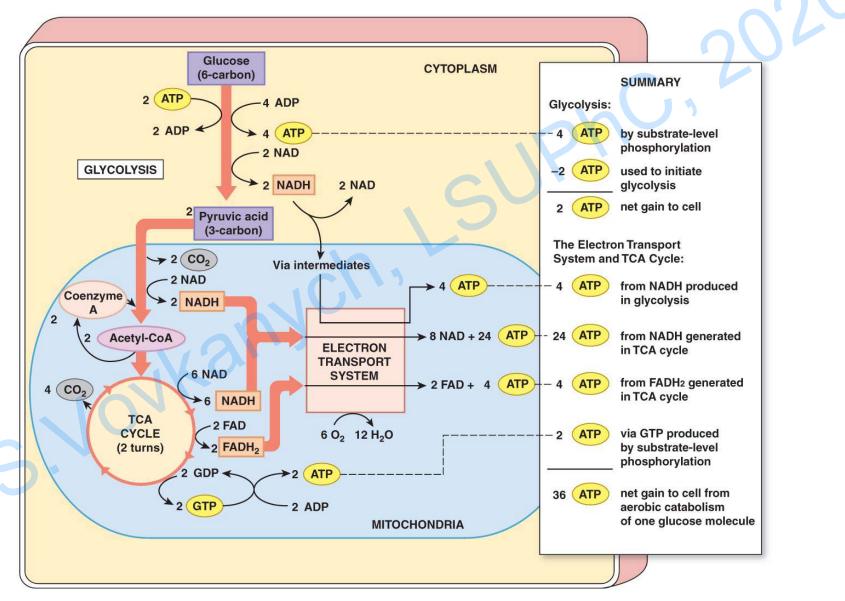
Metabolism

The Nutrient Pool

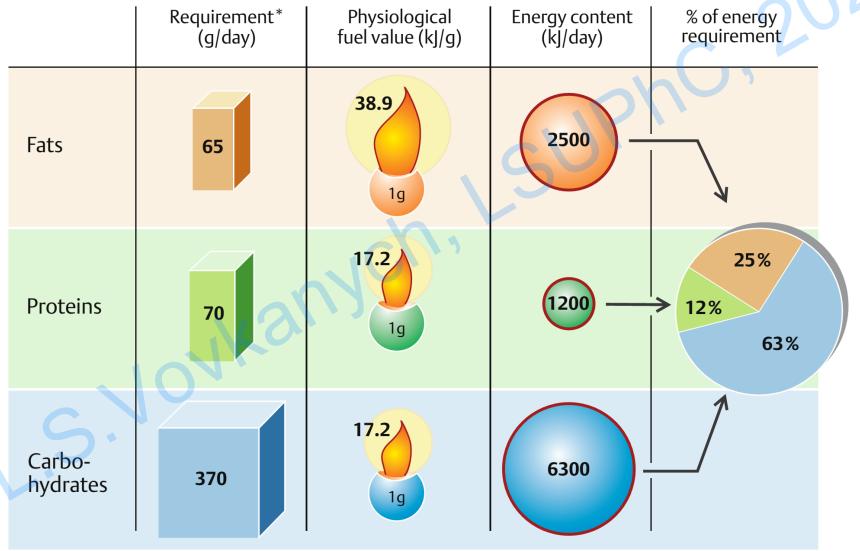
- Contains all organic building blocks cell needs
- To provide energy
- To create new cellular components
- Is source of substrates for catabolism and anabolism


Catabolism

- Is the breakdown of organic substrates
- Releases energy used to synthesize high-energy compounds (e.g., ATP)


Anabolism

- Is the synthesis of new organic molecules
- Needs the energy (e.g., ATP) and substrates


Pathways of Catabolism and Anabolism

Summary of the Energy Yield

Main Components of Food as Energy Sources

References

Martini R., Nath J. Fundamentals of Anatomy & Physiology. Eighth Edition

Guyton, Arthur C. **Textbook of medical physiology** / Arthur C. Guyton, John E. Hall. - 11th ed.

Sembulingam K., Sembulingam P. Essentials of Medical Physiology. Sixth Edition

Scanlon, Valerie C. **Essentials of anatomy and physiology** / Valerie C. Scanlon, Tina Sanders. — 5th ed.

Fox: Human Physiology. Eighth Edition

Silbernagl S., Despopoulos A. Color Atlas of Physiology. 6th edition