
HUMAN PHYSIOLOGY (normal) LECTURE 3. General Physiology of Central Nervous System. The Physiology of Spinal Cord

Lyubomyr Vovkanych Department of Anatomy & Physiology LSUPhC

Mechanism of Neurons Interaction

Synapses and Neurotransmitters

Two **Classes of Synapses** based on different action of the Neurotransmitters

Excitatory neurotransmitters

- Cause depolarization of postsynaptic membranes
- Promote action potentials

Inhibitory neurotransmitters

- Cause hyperpolarization of postsynaptic membranes
- Suppress action potentials

Synaptic Delay

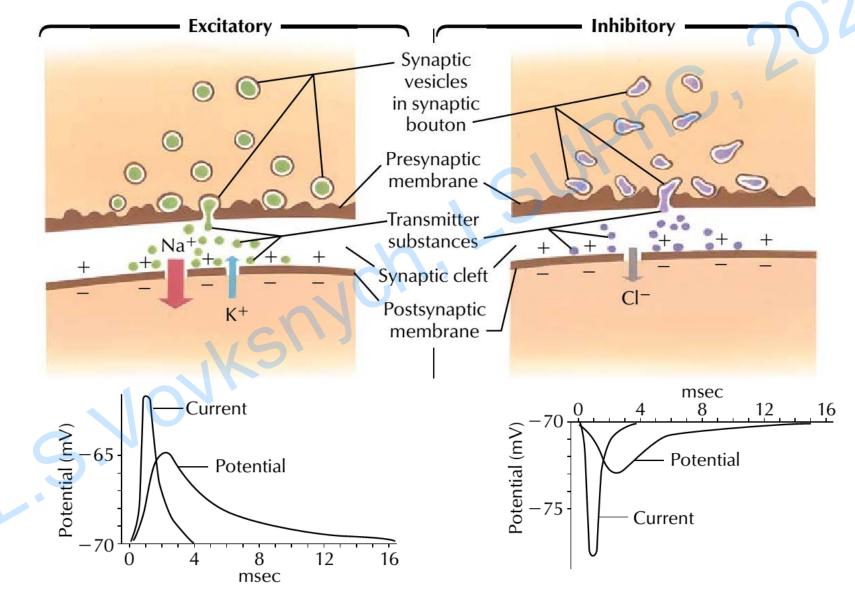
- Between the arrival of action potential at synaptic knob and effect on postsynaptic membrane
- Typical value 0.2–0.5 msec
- Fewer synapses mean faster response
- Reflexes may involve only one synapse

Neurotransmitters

At least **50 neurotransmitters**, the most important:

- Acetylcholine (ACh) usually excitatory
- Norepinephrine (NE) excitatory effect
- Dopamine may be excitatory or inhibitory
- Serotonin affects attention and emotional states
- Gamma aminobutyric acid (GABA)- inhibitory effect

Information Processing in CNS


Postsynaptic Potentials

 Graded potentials developed in a postsynaptic cell in response to neurotransmitters

Two Types of Postsynaptic Potentials

- Excitatory postsynaptic potential (EPSP)
 - Graded depolarization of postsynaptic membrane
- Inhibitory postsynaptic potential (IPSP)
 - Graded hyperpolarization of postsynaptic membrane

Two Types of Postsynaptic Potentials

Information Processing in CNS

Inhibition

 A neuron that receives many IPSPs is inhibited from producing an action potential, because the stimulation needed to reach threshold is increased

Excitation

- To trigger an action potential the number of EPSP is needed
- EPSPs (and IPSPs) combine through summation:
- temporal summation
- spatial summation

Information Processing in CNS

Neurons

Sensory neurons

- About 10 million
- Deliver information to CNS

Motor neurons

- About 1/2 million
- Deliver commands to peripheral effectors

Interneurons

- About 20 billion
- Interpret, plan, and coordinate signals in and out

Neural Circuits in CNS

Divergence

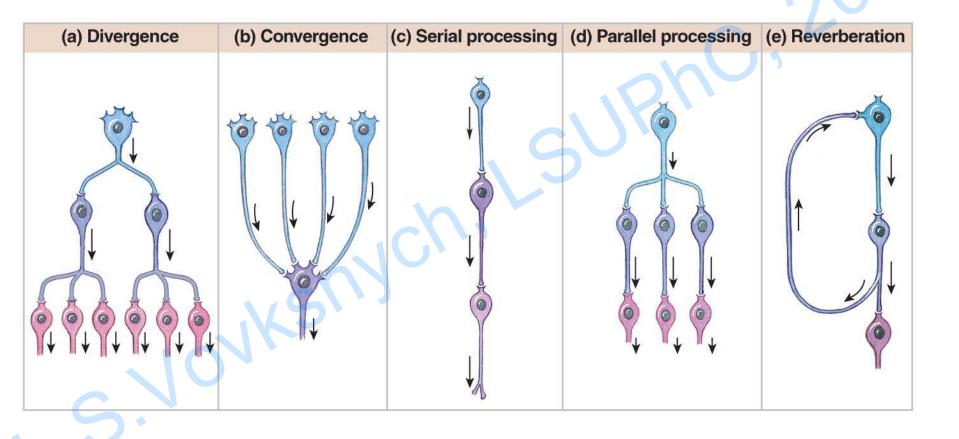
Spreads stimulation to many neurons or neuronal pools in CNS

Convergence

Brings input from many sources to single neuron

Serial processing

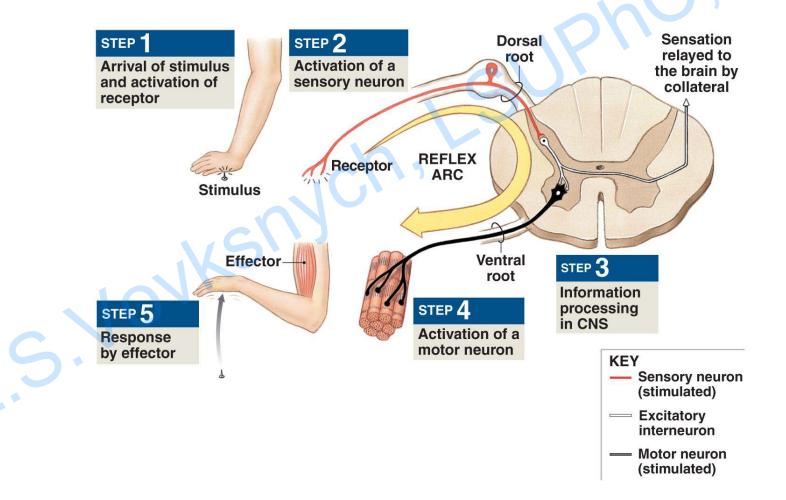
Moves information in single line


Parallel processing

Moves same information along several paths simultaneously

Reverberation

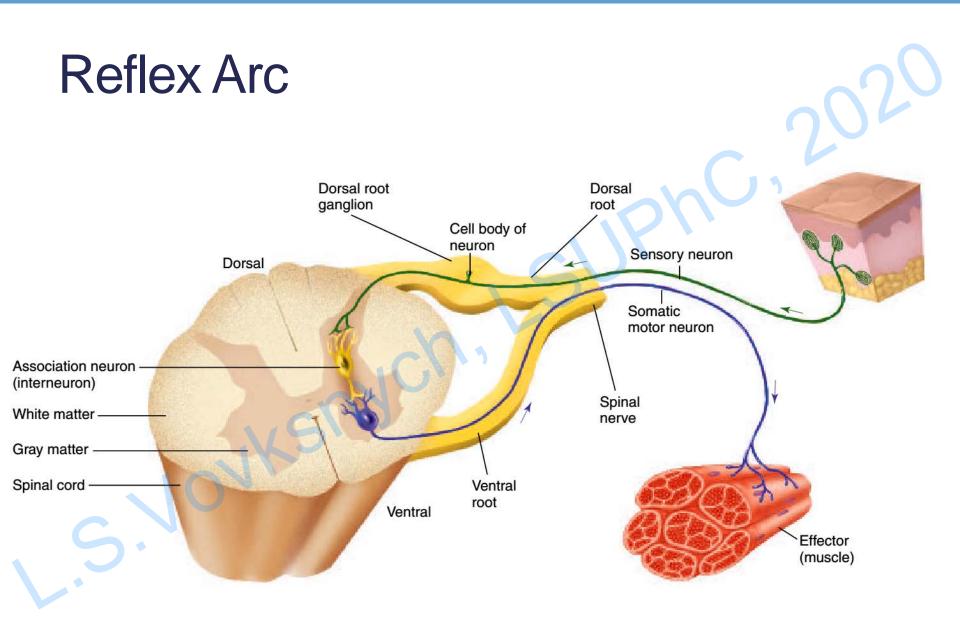
- Positive feedback mechanism
- Functions until inhibited


Neural Circuits in CNS

The Organization of Neuronal Pools

Reflexes

Reflex, or **reflex action**, is an mediated by CNS reaction in response to a stimulus influence



Reflex Arc

Reflex arc is the nervous pathway for a reflex action

A simple reflex arc includes five components:

- Receptor receives the stimulus. When receptor is stimulated, impulses are generated in afferent nerve
- Afferent or sensory nerve transmits sensory impulses from the receptor (via sensor neuron or group of neurons) to center
- Reflex center receives the sensory impulses via afferent nerve fibers and in turn, it generates appropriate motor impulses. Center (one neuron or group of interneurons) is located in the brain or spinal cord
- Efferent or motor nerve transmits motor impulses from the center (efferent neuron) to the effector organ
- Effector organ is the structure such as muscle or gland where the activity occurs in response to stimulus

Classification of Reflexes

Reflexes are classified by some different methods

- How reflex was developed
- Where the reflex center is localized
- What is the functional significance of the reflex
- How many synapses are in the reflex arc
- What is the response
- Where the receptors are localized

Classification of Reflexes

Development

- Inborn (Innate) reflexes unconditioned reflexes are the natural reflexes, which are present since the time of birth
- Conditioned or acquired reflexes are the reflexes that are developed after conditioning or training

Reflex center localization

- Spinal reflexes having their center in the spinal cord
- Bulbar or medullary reflexes have their center in medulla oblongata
- Midbrain reflexes have their center in midbrain.
- **Cortical** reflexes have their center in cerebral cortex

Functional Significance

- Protective reflexes
- Postural reflexes
- Digestive reflexes etc.

Classification of Reflexes

Number of Synapses

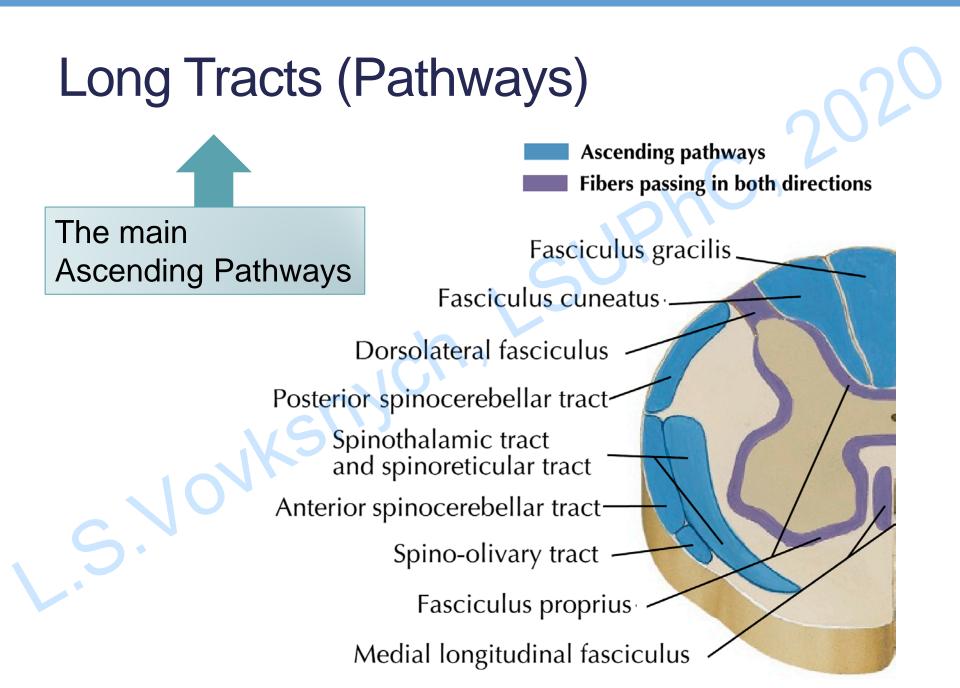
- Monosynaptic reflexes only one synapse in the reflex arc
- Polysynaptic reflexes more than one synapse in the reflex arc

Response

- **Somatic** reflexes are the reflexes, for which the reflex arc is formed by somatic nerve fibers (involve the participation of skeletal muscles).
- Visceral or autonomic reflexes are the reflexes, for which at least a part of reflex arc is formed by autonomic nerve fibers. Involve the smooth and cardiac muscles, glands

Receptors localization

- **Superficial** reflexes are the reflexes, which are elicited from the surface of the body (mucus membrane reflexes and skin reflexes)
- Deep reflexes are elicited from deeper structures beneath the skin like tendon
- Visceral reflexes are the reflexes arising from visceral organs

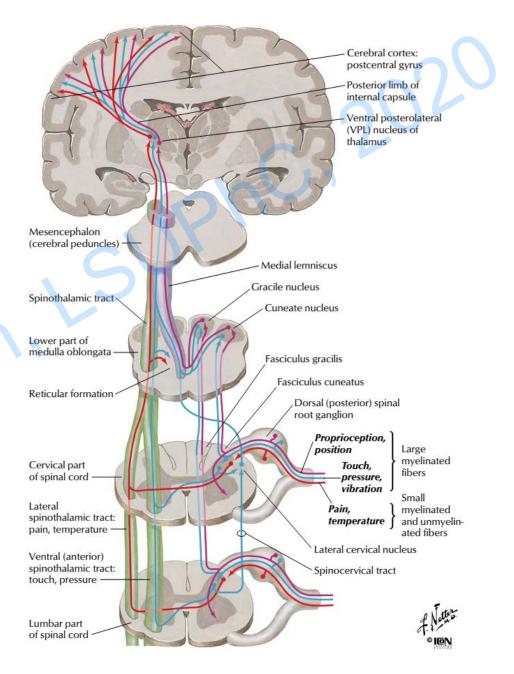

Functions of Spinal Cord

White matter – conductive function

- Short tracts (pathways)- connect different parts of spinal cord itself
- Long tracts (projection tracts) connect the spinal cord with other parts of CNS
 - Ascending tracts, which carry sensory impulses from the spinal cord to brain
 - Descending tracts, which carry motor impulses from brain to the spinal cord

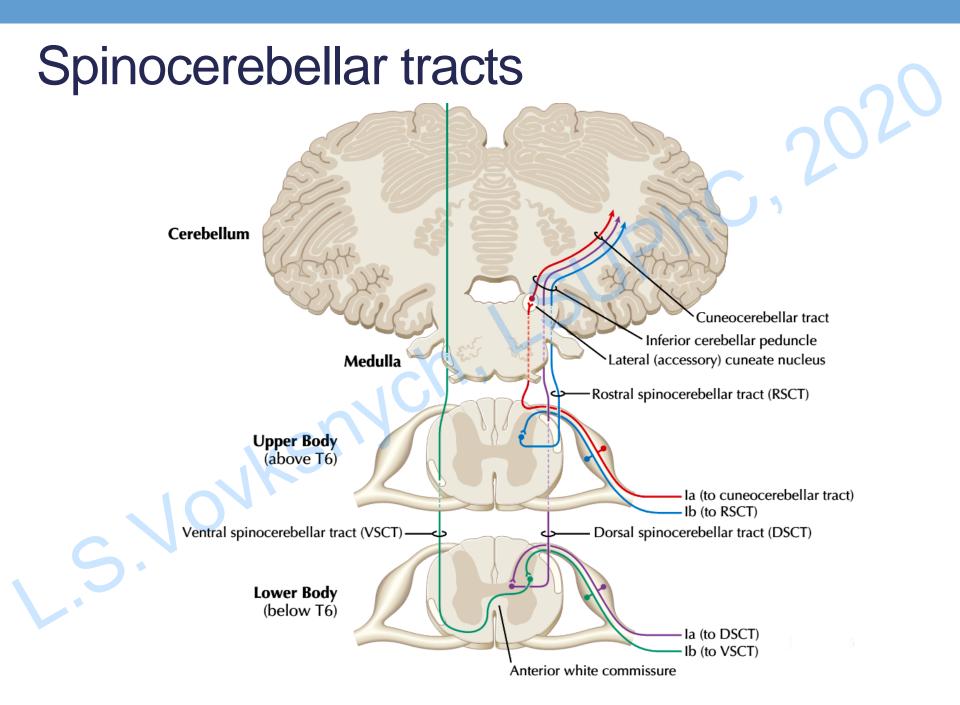
Gray matter – reflex function

- Monosynaptic reflexes
- Polysynaptic reflexes
- Intersegmental reflexes


Ascending Tracts of Spinal Cord

Column	Tract	Origin	Coarse	Termination	Function
Posterior white column	Fasciculus gracilis	Posterior ganglion	Uncrossed fibers No synapse in spinal cord	Nucleus gracilis in Medulla oblongata	Tactile sensation Vibratory sensation Conscious kinesthetic sensation
	Fasciculus cuneatus	Posterior ganglion	Uncrossed fibers No synapse in spinal cord	Nucleus gracilis in Medulla oblongata	

Ascending Tracts


Fasciculus gracilis Fasciculus cuneatus Spinothalamic tracts

JKS

Ascending Tracts of Spinal Cord

Column	Tract	Origin	Coarse	Terminatio n	Function
Lateral and Anterior	Anterior spinothalamic tract	Chief sensory nucleus	Crossing in spinal cord Forms spinal lemniscus	Ventral postero- lateral nucleus of thalamus	Crude touch sensation
	Lateral spinothalamic tract	Substantia gelatinosa			Pain and temperature sensation
	Ventral spinocerebellar tract	Marginal nucleus	Crossing in spinal cord	Anterior lobe of cerebellum	Sub- conscious kinesthetic
	Dorsal spinocerebellar tract	Clarke nucleus	Uncrossed fibers		sensations
	Spino-olivary tract	Non-specific	Uncrossed fibers	Olivary nucleus	Proprio- ception

Long Tracts (Pathways)

Descending pathwaysFibers passing in both directions

Anterior white commissure

Lateral (crossed) corticospinal (pyramidal) tract

Rubrospinal tract

Lateral reticulospinal tract

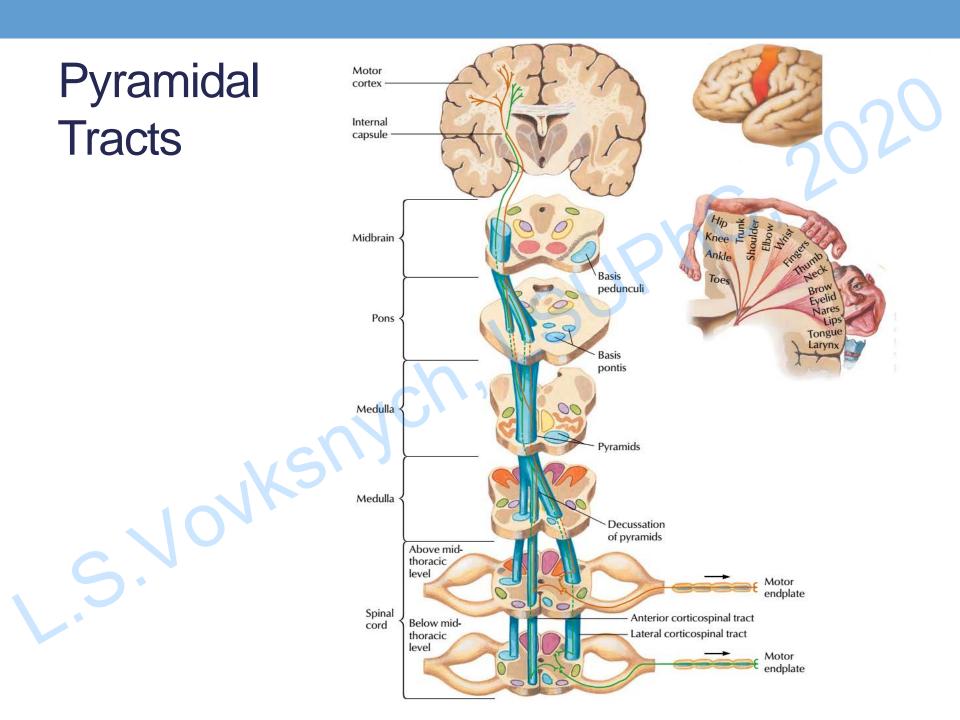
Anterior or medial (pontine) reticulospinal tract

Vestibulospinal tract

Tectospinal tract

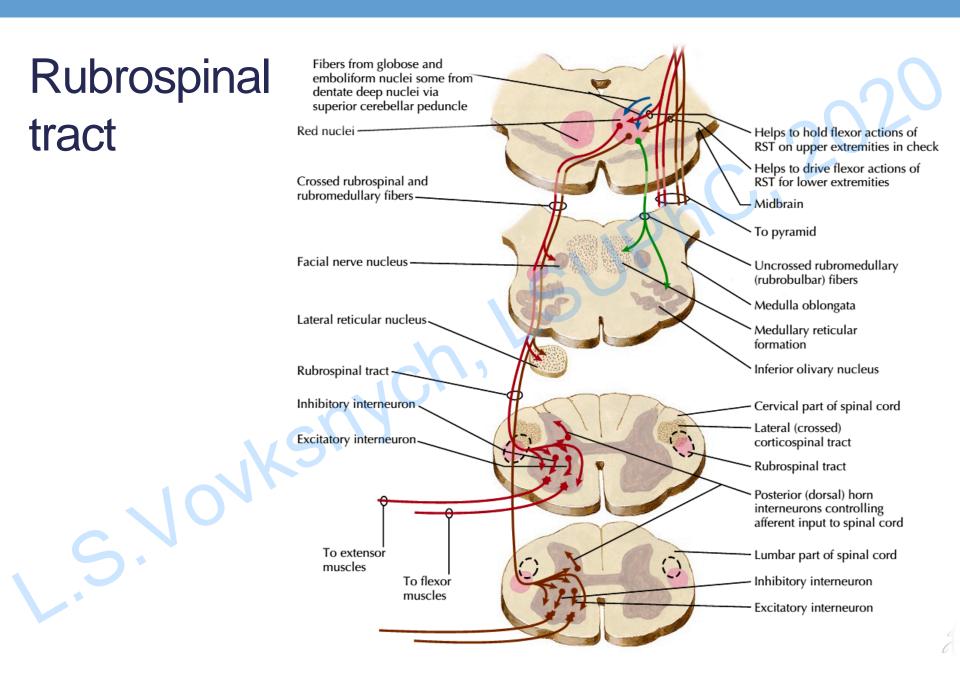
- Anterior (uncrossed) corticospinal tract

The main Descending Pathways


Pyramidal Tracts

1.7

.


Tract	Origin	Coarse	Termination	Function
Anterior corticospinal tract	Betz cells and other cells of motor area	Anterior white column Uncrossed fibers	Motoneurons	Control of voluntary movements
Lateral corticospinal tract	JKSI''	Lateral white column Crossed fibers	Motoneurons	

020

Extrapyramidal Tracts

Tract	Origin	Coarse	Function
Vestibulospinal tracts	Medial and lateral vestibular nucleus	Anterior and lateral white column Uncrossed fibers	Maintenance of muscle tone and posture
Reticulospinal tract	Reticular formation of pons and medulla	Lateral white Fasciculus Mostly uncrossed	Coordination of movements and muscle tone
Tectospinal tract	Superior colliculus	Anterior white column Crossed fibers	Control of movement of head in response to visual and auditory impulses
Rubrospinal tract	Red nucleus	Lateral white column Crossed fibers	Maintenance of muscle tone

Grey Matter of Spinal Cord

Reflexes

• Visceral (ANS)

• Motor (SNS)

Three types of **motor** neurons in anterior grey horn:

- Alpha motor neurons
- Gamma motor neurons
- Renshaw cells inhibitory neurons

Nucleus posterior marginalis (marginal zone) Substantia gelatinosa (lamina II)

Nucleus proprius of posterior horn

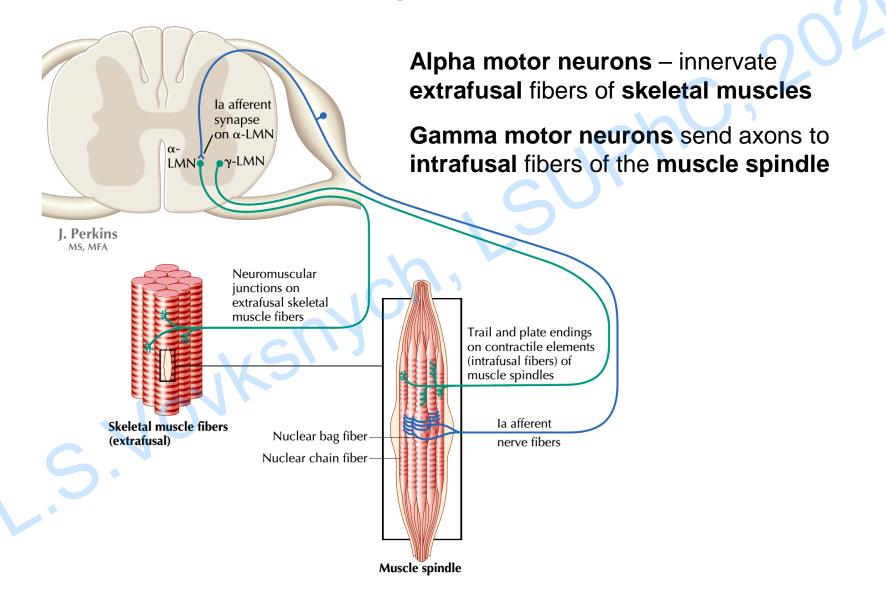
Nucleus dorsalis; Clarke's column (T1-L3)

Lateral basal nucleus

Spinal reticular zone -

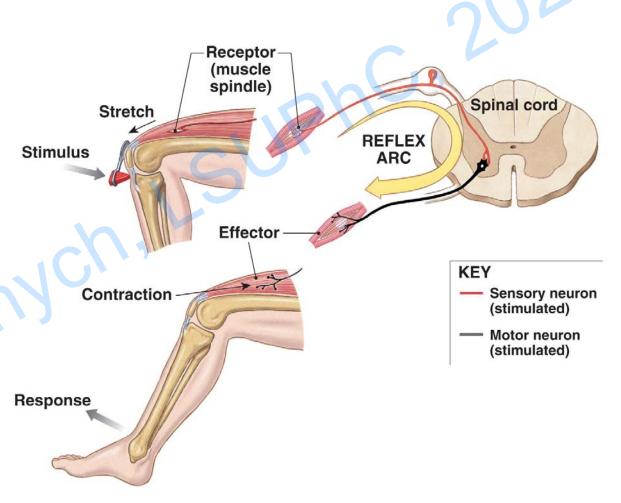
Intermediolateral cell column; sympathetic preganglionic neurons. (T1-L2)

Intermediomedial cell column; parasympathetic preganglionicneurons (S2-4)


Motor neurons of limbs (cervical and lumbar enlargements of cord)

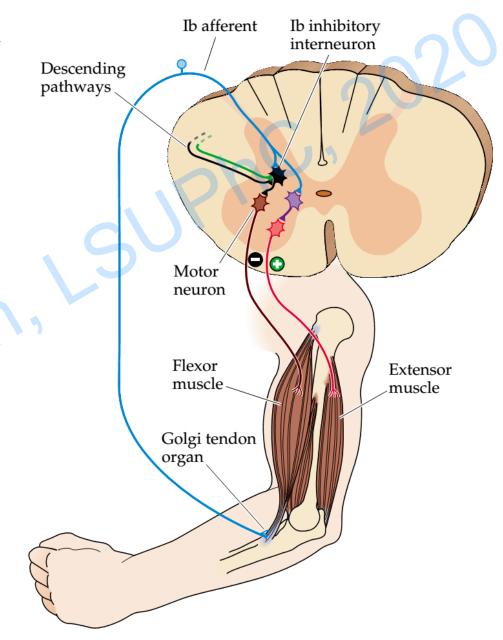
Extensors Distal part of limb Proximal part of limb

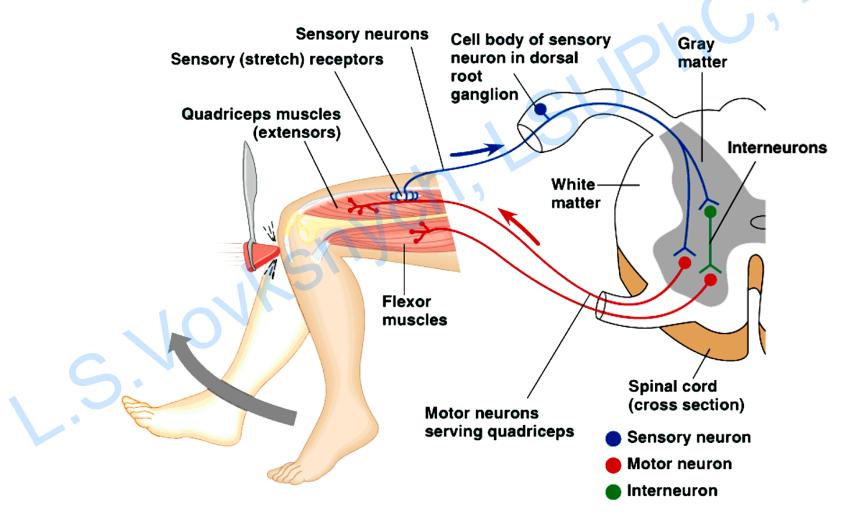
Flexors


Motor neurons of trunk and neck (C1-3 and T2-12)

Motoneurons of Spinal Cord

Stretch Reflex


- Monosynaptic
- Completed in 20– 40 msec
- Receptor is muscle spindle
- Stretched muscle responds by contracting
- Maintain the muscle length (posture)


The Tendon Reflex

- Polysynaptic
- Prevents skeletal muscles from developing too much tension and tearing or breaking tendons
- The lb afferents from tendon organs contact inhibitory interneurons that decrease the activity of α motor neurons innervating the same muscle.

Reciprocal Inhibition

The stretch reflex of antagonistic (extensor) muscle must be inhibited (reciprocal inhibition) by interneurons in spinal cord

Withdrawal Reflexes Distribution within gray horns to other segments of the spinal cord Painful Flexors stimulus stimulated Extensors **KEY** inhibited Sensory neuron (stimulated) - Excitatory interneuron Motor neuron (stimulated) **Polysynaptic** ---- Motor neuron (inhibited) Move body part away from stimulus (pain or ---- Inhibitory pressure) - pulls hand away from hot stove interneuron

 Strength and extent of response depends on intensity and location of stimulus

Crossed Extensor Reflex

- Involve a contralateral reflex arc
- Occur on side opposite to stimulus
- Occur simultaneously, coordinated with flexor reflex
- For example, flexor reflex causes leg to pull up, crossed extensor reflex straightens other leg, to receive body weight

Cutaneous afferent fiber from nociceptor (A δ)

Extensor

muscle

Opposite leg

extends to support

0

0

Flexor

muscle

Motor

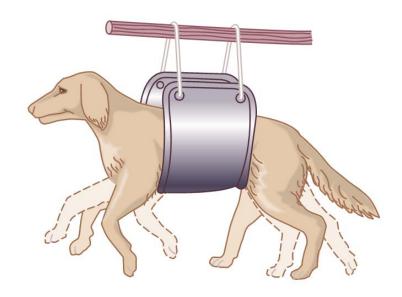
neuron

Extensor

Stimulated leg

flexes to withdraw

Cutaneous receptor


muscle

Postural and Locomotive Reflexes of the Spinal Cord

- Positive Supportive Reaction pressure on the footpad causes the limb to extend against the pressure
- Cord "Righting" Reflexes incoordinate movements trying to raise itself

Rhythmical Stepping Movements of a Single Limb.

- Reciprocal Stepping of Opposite Limbs.
- Diagonal Stepping of All Four Limbs
- Galloping Reflex
- Scratch Reflex

Spinal cord injury

Spinal cord **injury** leads to either temporary or permanent **dysfunction**. Dysfunction of spinal cord occurs because of:

- **Direct injury** due to bullet firing or accidents (on road, in working place, during communal violence, etc.)
- Compression by bone fragments, hematoma or disk material
- Ischemia due to rupture of spinal arteries

Spinal cord injury

Dysfunction of spinal cord is classified into four types:

- Complete transection
- Incomplete transection
- Hemisection
- Diseases of spinal cord

Spinal cord injury

Complete transection causes immediate loss of sensation and voluntary movement below the level of lesion

Then the effects (symptoms) of complete transection of spinal cord start appearing. Effects occur in three stages:

- Stage of **spinal shock** (lasts for about 3 weeks)
- Stage of reflex activity
- Stage of reflex failure

Stage of Spinal Shock

- Paralysis of limbs
 - injury at cervical region paralysis of all the four limbs (quadriplegia or tetraplegia)
 - injury at the other segments paralysis of lower limbs (paraplegia)
- Loss of reflexes
- Loss of sensations
- Effect on visceral organs (urinary bladder and rectum)
- Heart rate is decreased
- Venous return is very much decreased
- Effect on blood pressure

Stages of reflex activity and failure

Stage of reflex activity

- First, the functional activities return to smooth muscles
- Next, the sympathetic tone to blood vessels returns
- Lastly, after another 3 months, the tone in skeletal muscle returns (to flexor muscles first), the muscles remain hypotonic, limbs cannot support weight of the body
- Flexor and extensor reflexes appear

Stage of Reflex Failure

- Failure of reflex function develops.
- The reflexes become more difficult to elicit.
- The threshold for stimulus increases.
- The muscles become extremely flaccid and undergo wasting.

References

Martini R., Nath J. Fundamentals of Anatomy & Physiology. Eighth Edition

Guyton, Arthur C. **Textbook of medical physiology** / Arthur C. Guyton, John E. Hall. - 11th ed.

Sembulingam K., Sembulingam P. Essentials of Medical Physiology. Sixth Edition

Scanlon, Valerie C. **Essentials of anatomy and physiology** / Valerie C. Scanlon, Tina Sanders. — 5th ed.

Fox: Human Physiology. Eighth Edition

Silbernagl S., Despopoulos A. Color Atlas of Physiology. 6th edition