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Abstract. The aim of the research is to develop a method of mechanical and mathematical modeling and 
computer simulation of dynamic stabilization of bow rotation in the vertical plane intending to get practical 
recommendations for the sport of archery. Behavior of a flexible stabilizer in the main plane of the modern 
sport bow designed in the frame of International Archery Federation is analyzed using a mechanical and 
mathematical model. The model is designed basing on Euler-Bernoulli beam and Lagrange equations of the 
second kind. An engineering oriented method based on virtual modes and Rayleigh-Ritz procedure is 
developed to study natural frequencies of the archer-bow-stabilizer system. The results of modeling of the 
archer-bow-arrow system correlate with well-known results of a high-speed video analysis: the process of 
common motion has a significant non-linear character. 

Keywords: sport archery, bow, dynamics, stabilization, modeling, simulation. 

1. Introduction 
The main features of the modern target bow designed according FITA (International Archery Federation) 

Standard [3] are a rigid central part named a riser with a handle and two flexible limbs fixed at the ends of 
the handle (Fig. 1). The unstrung limbs have got recurved horns at the free ends and are bent backward off 
the internal part of a bow. To make a shot, a bow is situated vertically with its main plane. Despite a simple 
construction at first sight, bow moves surprisingly complicated. Its motion is in 3D space before, during, and 
after the shot. Displacement of the bow riser is significantly smaller than displacement of the arrow, string’s 
displacement, and two limbs’ displacement in the vertical plane. All the system moves laterally too, but this 
movement is smaller in comparison to the movement in the main (vertical) plane. To avoid some part of bow 
riser motion, modern sport bows are supplied with a long cantilever rod (or a multi-rod packet) mounted in 
front of the riser directly to a target. Additionally, there are from one to three short cantilever rods mounted 
on the riser in different directions relatively to the main rod but their role in bow stabilization is secondary 
and their availability on the riser is optional. 

Bow riser movement before the shot, i.e. before the string releases off archer’s fingers, is under the 
archer control and directly affects aiming. Movement during the shot, i.e. during string and arrow common 
motion is partly controlled by the archer hand holding a bow riser and partly is free. This movement affects 
aiming to some extent. Bow movement after the shot, i.e. after an arrow launches the string does not affects 
arrow’s flight but causes the archer to modify a style to anticipate the movement. Ellison (1996) classified 
this motion as displacement, rotation, and vibration and qualified the character of them according to the three 
phases mentioned above [1]. To summarise a stabiliser system’s behavior, he pointed two main functions: to 
maximise the dynamic stabilisation of the bow, particularly with respect to the bow recoil and to establish a 
'balanced bow' with the force on the bowhand running through the bow arm. The main part of the handle 
motion is rotation. 

The aim of the research is to develop a method of mechanical and mathematical modeling and computer 
simulation of dynamic stabilization of bow rotation in the vertical plane intending to get practical 
recommendations for the sport of archery. 

Published by World Academic Press, World Academic Union 
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Fig. 1: Archer with a sport bow [3]. 

2. Modeling of a Stabilizer 

2.1. Common Approach to the Model Design 
Let’s consider a compound hinge and a rode mechanism as a bow scheme model [7]. A stabilizer is 

modeled as an elastic rod joined to the handle like a cantilever beam. According to the results of the video 
investigation [2], a bow stabilizer bends according the main mode of natural oscillation. Energetic methods 
of dynamic mechanics obtain comprehensive accuracy for mechanical engineering calculation. Therefore, we 
can design a mechanical and mathematical model of a bow with stabilizer using a hypothetical function of 
the main mode of the beam. According to the theorem of applied mechanics, a precision of natural 
frequencies obtained with the energetic methods is near the precision of hypothetic functions having been 
used [4]. 

Sport archers stretch a bow during the time of common motion of a string and an arrow with the fixed 
hand trying to keep a steady pose of a body. Body mass is significantly greater than bow mass. Therefore, we 
can assume the point of contact as immovable, i.e. a pivot point. Angular displacement of the riser (measured 
in radians) is much smaller than unite; therefore we can use a linear model for its modeling. Inertial 
properties of the bow are modeled with a load relatively to the pivot point. So, the model of the stabilizer 
could be a one end pinned elastic beam with a point mass that has got a moment of inertia on the same end. 

To approbate hypothetic functions of stabilizer dynamic bend, we consider a range of ratio for beam and 
joined load mass. If the moment of inertia of the load is much more than the moment of inertia of the beam 
relatively the pivot point, the problem is near analysis of natural oscillation of a cantilever elastic beam. If 
the other way rounds, the problem is about the elastic beam with one free end and another pinned end. 

At the very beginning, we assume the hypothetic function of the main mode as a function of static bend 
of a cantilever beam loaded by a concentrated force at the free end (Fig. 2 a): 

( ) ( lzFzz 3
6

2
−= )

ε
η ,                                                                   (1) 

where F is a loading force; ε  is distributed bend stiffness of the beam; l  is length of the beam; z  is 
longitudinal coordinate; η  is transverse displacement. The function (1) satisfies three of four boundary 
conditions, i.e. the geometrical conditions and one of two dynamic conditions. The geometrical conditions 
are zero displacement and zero angle of cross-section turn at the fixed end. Only one dynamic condition is 
satisfied by the function (1), i.e. zero moment of the force, but zero cross-section force at the free end isn’t 

                                                           
1 E-mail address: igor_zaniewski@ukr.net. 

SSci email for contribution: editor@SSCI.org.uk 



International Journal of Sports Science and Engineering, 2 (2008) 1, pp 03-14 5

satisfied. However, this function is very fruitful in the problem because the error of the main natural 
frequency isnear 0,73 % [6]. 

 

Fig. 2: Scheme models of a bow stabilizer as a cantilever elastic beam (a) and as one-end hinged elastic beam: models 1 
and 2 (b); models 3, 4, and 5 (c); the model 6 (d). 

As a hypothetic function of the main natural oscillation mode of one hinged beam (Fig. 2 b) we assume a 
sum of one-half sinusoid wave and a linear function: 

z
l
zsinA κπη += ,                                                              (2) 

where А is a function of time; κ  is an angle of sinusoid wave turn. 
Like (1) the function (2) satisfies only three of four boundary conditions, i.e. zero displacement and zero 

force moment at the pinned end of the beam and one dynamic of the two boundary conditions, i.e. zero force 
moment at the free end. Another dynamic boundary condition is not satisfied, i.e. zero cross-section force at 
the free end. Despite this, the function (2) allows an appreciated precision of the main natural frequency 
because the error is near 1,10 % [10]. 

Because there are no results on the problem of natural frequencies of a one end pinned beam with a load 
in well-known mechanical and mathematical publications, we consider this problem using Hamilton 
variation principle: 
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correspondingly; µ is distributed mass of the beam; t is time; I is moment of inertia of the load relatively the 
hinge axis (see Fig. 2 b). Placing the two last expressions of energy in the Hamilton functional, we get 
correspondent differential equation: 
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Solutions of the problem (3) obtained using Krylov functions are roots of the determinant: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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2 44
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,                                          (4) 
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where 4
23

ε
ωmlkl =  are dimensionless values of natural frequencies; m is mass of the beam; ω is circular 

natural frequencies; 
2ml

Iv =  is dimensionless value of the moment of inertia of the load. Zero solution of 

the equation (4) corresponds with common rotation of the beam and the load relatively the hinge axis. 
As v=0, we get kl=0; 3,927; 7,069; 10,210; 13,352; …, which are the same as well-known solutions for 

the beam with one hinged end ( )
4

34 −iπ , where i is a number of natural frequency [5]. There is no zero 

solution as v= : kl=1,875; 4,694; 7,855; 10,996; …, which are the same as well-known solutions for the 

cantilever beam 

∞
( )

2
12 −iπ . Solutions of the main frequency for different relationship of mass-inertial 

parameters are presented on the Fig. 3 (ODE line). 

 

Fig. 3: Main natural frequency vs. bow and stabilizer mass-inertial parameters: ODE is considered as an exact solution 
(eq. 4). 

2.2. Model Versions of the Stabilizer 
Using a hypothetical function of the main natural mode, we can apply Lagrange equations of the second 

kind: 
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where qi are generalized coordinates; prefix shows a partial derivation in time, i.e. t)( ∂
∂≡′ . 

Model version 1 is designed as a sum of (1) and a linear function: 
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As generalized coordinates, there are А and κ . The angle of the load turning is κη
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=0zz
. After 

substituting of the hypothetical function (6) in the equations of energies and then in (5), we get expressions 
for the main natural frequency: 
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4001213533124 ,                                               (7) 

where (/) is a sign of division. 
For the model version 2, we applied the hypothetical function (2). Like has been made before, we get the 
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angle of the load’s turn that is presented here as expression 
l
A
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of the main frequency is: 
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In the model version 3, hypothetical functions are assumed with the expressions: 
All cl +== κηκη ; .                                                         (9) 

Virtual stiffness and mass of the beam are located at the free end (Fig. 2 c). Using the function (1), we 

get: 
3

3
l

c ε
= ; mmc 140

33
= . The angle of the load turning is κη
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. Correspondent expression for the 

main frequency is: 
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=                                                            (10) 

Model version 4 is different of the model version 3 only with the value of virtual mass ⎟
⎠
⎞

⎜
⎝
⎛ =

3
mmc  that 

corresponds with the value of the moment of inertia of the beam relatively the hinge axis. Here, a formula for 
the main natural frequency is: 

( ) ( )
v

v/kl +
=

3194 .                                                          (11) 

Model version 5 is a combination of two previous model versions, i.e. 3 and 4: mmc 140
33

= ; 

mml 420
41

= . General virtual mass ⎟
⎠
⎞

⎜
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3
mmm lc  corresponds with the value of the beam moment of 

inertia. The main natural frequency is calculated with a formula: 
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In the model version 6 the beam mass is located in three points, i.e. at the beam-ends ⎟
⎠
⎞

⎜
⎝
⎛ == mmm

6
1

20  

and in the middle of the beam ⎟
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⎛ = mm
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1 . Stiffness is concentrated in two points, i.e. in the middle of the 

beam and at the free end: 
321

6
l

cc ε
==  (Fig. 2 d). This is equal to the stiffness of the cantilever beam: 

3
3
l

c ε
= . Using the function (6), we get an expression for the main natural frequency: 
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The results on the relative accuracy for the all six model versions (7), (9)-(13) relatively the ODE 
solution (4) are grouped in the Table 1. From the practical point of view, appreciated results regards the 
accuracy of the main natural frequency is obtained with the model versions 1, 2, and 6. But the best accuracy 
in a wide range of mass-inertial parameters of the beam and the load ( )∞<<− vlg5,1 , we get using model 
version 1. Model version 2 is appreciated only for small loads ( )3−<<∞− vlg . Using the model version 6, 
we get mediocre level of accuracy, and only in a narrow range of relationship (  the accuracy is 
appreciated. The main natural frequency results obtained with the model versions 1, 2, and 6 and the ODE 
solutions (4) are presented in a non-dimensional form (Fig. 3). 

)2−≈vlg

Taking into account a real relationship between bow and stabilizer mass-inertial parameters 
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( 0251 ,vlg, <<− )  and considering the results of calculations (see Table 1 and Fig. 3), we can choose the 
model version 1 as the best one. The smallest error of the main natural frequency result for this model is 0,16 
% when the relationship v=0,0537 (lgv=-1,27). 

Table 1: Related errors of the main frequency for different model versions of a bow and stabilizer system (%) 

          lgv                                                               Number of a model version 
 1 2 3 4 5 6 

-6 9,30 1,10 1055,69 959,79 -34,62 5,26 
-5 9,30 1,11 550,01 496,07 -34,61 5,27 
-4 9,18 1,12 265,79 235,44 -34,58 5,20 
-3 8,10 1,25 107,21 90,01 -34,25 4,61 
-2 2,54 3,41 25,59 15,17 -30,66 1,82 
-1 0,27 15,52 3,27 -5,30 -12,90 3,08 
0 0,66 21,01 0,98 -7,40 -1,35 4,36 
1 0,72 21,72 0,76 -7,60 0,51 4,52 
2 0,73 21,80 0,71 -7,65 0,69 4,52 
3 0,73 21,81 0,74 -7,62 0,74 4,55 

 

3. Approbation of the Model 

3.1. Model of Aiming 
In a static problem of the bow and stabilizer system [11], we can assume only two external forces, which 

act to the handle and to the string, i.e. the forces in the points corresponding О (the pivot point) and А (nock 
point). A mathematical model of the bow at the drawn situation is (Fig. 4): 
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ηφφ

ξ
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= ;;; , 

where  are limbs’ lengths;  are lengths of string branches in the drawn bow situation;  
are lengths of the branches of a free string;  are virtual lengths of the riser, i.e. the distances from the 
pivot point (O) to the points of virtual elastic elements of limbs;  are stiffness of the limbs;  

are forces of the string branches;  are projections of the drawn force to the axis of co-ordinates;  is 

a length of an arrow (and drawn distance too);  is a parameter of stiffness of a string. The subdivides 

LU l,l LU s,s LU SS ,

LU h,h

LU c,c LU F,F

ηξ F,F al
f “U” 

and “L” mark corresponding the upper and lower limbs. 
Mathematical model of the braced bow is: 

;cosshhcoslcosl BBLULBLUBU γθθ 2=+++  ;sinssinlsinl BBLBLUBU γθθ 2=−  

);(c)sin(lF UUBUBUBUB ϕθγθ +=− );(c)sin(lF LLBLBLBLB ϕθγθ +=+ ,
S

SsfF B
B

−
= (15) 

where  is the string length in the braced situation;  is the force of the string stretch;  is the length 
of a free string (see Fig. 4). Subdivide 

Bs BF S
“В” means parameters of a bow with a braced string. 

Systems of equations (14) and (15) include transcendent and non-linear functions, so they could not be 
solved analytically. Therefore, considering the static problem, we applied numerical method using a program 
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Find from the software package Mathcad 2000i Professional (www.mathsoft.com). 
 

 

Fig. 4: Static scheme model: braced bow (1); drawn bow (2). 

3.2. Bow, Stabilizer, and Arrow Common Motion 
The main attempt to the dynamic problem on bow and arrow system has been founded [8, 9]. Using co-

ordinates of the nock point, limb angles, the angular co-ordinate of the riser, and the angular co-ordinate of 
the arrow we could form expressions of energy (Fig. 5): 

( ) ( )( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ⎪

⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
−′−′−

−+′+′
′+′−′+′+′+

′+++′+′+′+′+

=
∫

κθκθ
κθκθ

κκθκθ

κψηµηξ

LLLLL

UUUUU
LLUU

LLUUH

l

AAAAaA

coshrm
coshrm

II

hmhmIdzzzmmm
T

a

2
2
1

22

222

0

222

; 

( ) ( ) ( ) ( )

( ) ( )( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

++′′+

−+−++++

=

∫ ∫
a al l

AA

LL
L

UU
U

LLLUUU

dzzzgdzzz

Ss
S
fSs

S
fcc

P

0 0

2

2222

2
2
1

ψηµψµξ

ϕθϕθ

                   (16) 

where sA mm 3
1=  is mass of a string pinned to the nock point;  is mass of a string;  is mass of an 

arrow; 
sm am

( )zµ  is distributed mass of an arrow’s shaft; z  is a co-ordinate fixed to the arrow axis; ψ  is an 

attitude angle of an arrow; HI  is moment of inertia of a riser relatively the pivot point;  are mass 

of limbs with added mass of string 

LU mm ,

( sm3
1 )  pinned to their nock points;  are moments of inertia of 

limbs relatively their joints to the riser with addition the same part of string mass;  are distances of 
centers of mass of limbs to their joints;  is gravity constant. 

LU I,I

L,U rr
g
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Bow and arrow interaction has been described according the model (6) taking into account only the 
interaction at the nock point. The initial position of the arrow relatively the bow in its main (vertical) plane is 
determined with a rest that holds an arrowhead. A rest is fixed to the handle and has got ability to turn and to 
disappear just an arrow starts movement. Thanks a small size and mass, the rest does not accumulate 
significant amount of energy, therefore its interaction with an arrow is not taken into account in the frame of 
the model. 

Solving the dynamic problem like the static problem (14) and (15), we do not consider gravity forces 
acted the bow. But we take into consideration an arrow weight because its force moment acted the arrow is 
the same value as the moment of inertial forces. 

Kinetic and potential energy of the stabilizer with the main natural form (6) according the model version 
1 is: 

⎟
⎠
⎞

⎜
⎝
⎛ ′′+′+′= κκ AllAmT stststst 20

112
3
1

35
33

2
1 222 ; ( )22

2
1 AcP st= ,                     (17) 

where 33
st

st
l

c ε
=  is bend stiffness of a cantilever stabilizer loaded by a transverse force at the free end. 

Placing the expressions (16) and (17) to the Lagrange equations (5), we get a system of differential 
equations of the second power relatively the generated co-ordinates A,,,,,,q LUAAi κθθψηξ≡ : 

( ) ;042 =+−′′+ SeSemm LUAaA ξ  
( ) ;SeSegmrmmm LUaAaAaA 031 =+−+′′+′′+ ψη  

( ) 0=+′′+′′+′′ grmI AAAaA ψξηψ ; 
( ) ( ) ( ) 012211 =−+++′′+′′+′′ SbSblecbhrmI UUUUUUUUUU ϕθκκθ ; 
( ) ( ) ( ) 034433 =+−++′′−′′−′′ SbSblecbhrmI LLLLLLLLLL ϕθκκθ ;

( ) ( ) ( )[ ]
( ) ( )[ ]
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43342112
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( ) 0435
33

20
11 =+′′+′′ AcAlm ststst κ ,                                                 (18) 

where  is a moment of inertia of the arrow relatively its tail;  is a distance from the tail to the center of 
mass of the arrow; 

AI Ar

( ) ( )
LL

LL
L

UU

UU
U Ss

Ssfe
Ss

Ssfe −
=

−
= ; ; 2

4
2
3

2
2

2
1 ; SSsSSs LU +=+= ; 

AUU blhS η−+= 11 ; AUU blhS ξκ −+= 22 ; ALL blhS η++= 33 ; ALL blhS ξκ +−= 44 ; 
( ) ( )κθκθ +=+= UU bb sin;cos 21 ; ( ) ( )κθκθ −=−= LL bb sin;cos 43 . 
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Fig. 5: Dynamic scheme model (a); scheme model of an arrow (b). 

The initial conditions of the problem are: 

,00;0;0;0;0;0;0

;;0;;;;,0 0000

=′=′=′=′=′=′=′=

=======

AA

lt

LUAA

LLUUAAaA

ψκθθηξ

ψψκθθθθηηξ
                      (19) 

where constants 000 LUA ,, θθη  are the solutions of the static problem (14). Zero values of derivations 

correspond the manner of the sport archer technique, i.e. a breathing is stopped and a pose is motionless. 
Stabilizer parameters play in the two last differential equations (18). 

The system of equations (18) with initial conditions (19) represents a Cauchy problem for the ordinary 
differential equations of the second power. It is impossible to get analytical solutions for the problem, 
therefore we used Runge-Kutta method applied in the program NDSolve from the package Mathematica 5.1 
(www.wolfram.com). 

4. Computer Simulation 
Lets consider a modern sport bow with parameters: == LU ll 48 cm; 95,3 g; 

63,44 kgcm

== LU mm
== LU II 2; 21,7 cm; == LU rr == LU cc 12078 Ncm; =Uϕ -0,06; =Lϕ 0,06; 

43,4 cm; 2710 kgcm== LU hh =HI 2; =US 80 cm; =LS 90 cm; =f 11900 N; 7 g; =sm =al 70 cm; 

25 g; 55,5 kgcm=am =AI 2; 41,3 cm; l=Ar st=1,486 m; mst=0,304 kg; cst=702 N/m. From the static 
problem (14), we have got =0Aη 24 mm; =0Uθ 0,826; =0Lθ 0,694. The rest point situates at the 
coordinate =0Pη 34 mm. 

The results of solution of the problem for the parameters above are presented in the graphs (Fig. 6, 7). 
An arrow launches a string nock point as their common longitudinal acceleration becomes zero. At the 
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instant an arrow has the maximal longitudinal speed. The time of bow and arrow common motion is about 
15,8 ms. The graphs describe a process of bow stabilization in the vertical plane during the bow and the 
arrow move together. Bow riser angular motion clockwise is partly compensating by stabilizer bend 
counterclockwise. A monotone character of these movements testifies a below resonance regime of the 
process. 

Bow and arrow common motion has an extremely non-linear character. During the motion, the 
acceleration of the longitudinal displacement Aξ ′′  decreases from approximately 640 g  to 270 g , and then 
increases again up to 520 g  (see Fig. 6 a).; in the finishing phase it decreases to zero. Simultaneously, the 
longitudinal projection of the arrow velocity increases (non-linear again) up to 52.8 m/s (see Fig. 6 b). At the 
time, the riser turns on a small angle 00060.−=κ  rad (see Fig. 6 c), i.e. it moves forward with its upper part. 
This is proved correct by high speed video film [2]. 

String and arrow common motion (internal ballistics) is accompanied with intensive oscillations, which 
are caused by destruction of the static balance of forces at the point of string release. There are seven full 
cycles of oscillation during the motion (see Fig. 7). 

The level and the character of dynamic stabilization are to a certain degree depended on stabilizer beam 
stiffness. Results of the calculation experiment on the issue are presented in Table 2. We can notice that 
stabilizer beam stiffness increase causes bow riser turn increase. Comparing the bow without a stabilizer (κ= 
0,00191 rad) and the bow with absolutely solid stabilizer (κ∞= 0,00116 rad), we can determine a difference 
of a bow riser turn about 65 %. 

Table 2: Kinematics parameters of bow stabilization at the instant as an arrow launches a string 

cst, N/m -1000*κ 2*A, mm 100* κ/κ∞, % 
∞  1,16 0 100 

2000 1,45 1,32 125 
1500 1,53 1,67 132 
1000 1,62 2,16 140 
500 1,73 2,62 149 
0 1,91 - 165 
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Fig. 6: Kinematical parameters of the system: longitudinal acceleration of the arrow vs. time (a); longitudinal speed of 

the arrow (b); bow riser angle multiplied by stabilizer length (c); pure bend displacement of the free end of the stabilizer 
(d). 

On the other hand, dynamic bend of the beam stabilizer decreases as the stiffness increases. For example, 
in the case of a cylindrical tube stabilizer (сst=1000 N/m), the bend is 1,6 times grater than in the case of four 
rods packet of the equal mass (сst=2000 N/m). At the same conditions, stabilizer mass increase causes 
decrease of bow turn motion below the resonance zone. 

 

 

Fig. 7: Kinematical parameters of internal ballistics: an angle of attack of the arrow vs. time (a); an attitude angle (b); an 
angular speed of the arrow in the vertical plane (c); an angle of the speed vector of the arrow longitudinal movement 

relatively horizon (d). 
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5. Conclusions 

• For real relationship of bow and stabilizer mass-inertial parameters, we can get the best accuracy of the 
main natural frequency of the system (near 1,1 %) using a hypothetical function as a combination of a 
linear function and the function of static bend of a cantilever beam loaded by a force at the free end. 

• String and arrow common motion (internal ballistics) is accompanied with intensive oscillations, which 
are caused by destruction of the static balance of forces at the point of string release. There are seven full 
cycles of oscillation during the motion. 

• Beam stabilizer stiffness increase cause a significant decrease of bow turn motion and decrease of 
dynamic stabilizer bend. At the same conditions, stabilizer mass increase causes decrease of bow turn 
motion in below the resonance zone. 

• The model describes the process of bow stabilization in the vertical plane during the bow and the arrow 
move together. Bow riser angular motion clockwise is partly compensating by stabilizer bend 
counterclockwise. A monotone character of these movements testifies a below resonance regime of the 
process. 

• The attempt to the problem of sport bow stabilization in the vertical plane proposed in the paper is 
addressed to practical needs of applied engineering mechanics and the archery sport. The models and 
methods have been adapted for realization in an engineering method using well-known mathematical 
CAD systems. Numerical results of computer simulation are presented in tabular and graphical form, 
which makes it easy for sportsmen and coaches to use. 
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7. Appendixes (omitted) 

7.1. MathCAD program on the model of archery bow parameters in the drawn situation 

7.2. Mathematica computer program on bow stabilization in the vertical plane 
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