HUMAN PHYSIOLOGY (normal) LECTURE 11. Physiology of the Blood System

Lyubomyr Vovkanych Department of Anatomy & Physiology LSUFC

Properties of the Blood

- Blood is a connective tissue in fluid form
- Color: Blood is **red** in color
- Volume: Average volume of blood in a normal adult is 5 L (4.5 L in females), about 8% of the body weight or 80–85 ml/kg body weight
- Blood contains the blood cells which are called formed elements and the liquid portion known as plasma

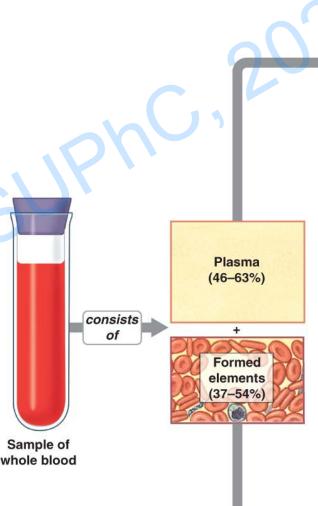
Functions of Blood

Transport function

- Nutritive function (transport of glucose, amino acids, lipids and vitamins)
- Respiratory function (transport of respiratory gases oxygen and carbon dioxide)
- Excretory function (transport of waste products)
- Thermoregulation (transport of heat)

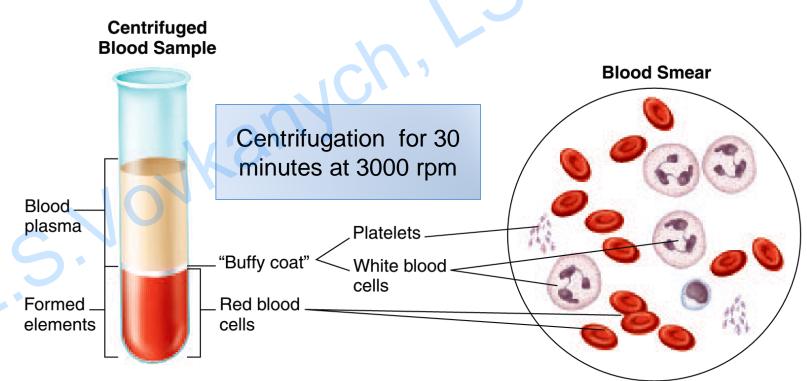
Regulatory function (transport of hormones and enzymes)

Homeostasis maintaining (regulation of water balance, acidbase balance, body temperature)


Defensive Function (defense against toxins and pathogens and blood clotting)

The Composition of Whole Blood

- **Plasma** (about the 55%) fluid consisting of:
- water (more than 90%)
- dissolved substances organic, inorganic, gases


Formed elements (less than 45%) Three Types of Formed Elements

- Red blood cells (RBCs) or erythrocytes - transport oxygen
- White blood cells (WBCs) or leukocytes - part of the immune system
- Platelets cell fragments involved in clotting

Hematocrit Value

- Volume of red blood cells expressed in percentage is called the hematocrit value or packed cell volume (PCV)
- Hematocrit value:
 - female 37%-48%;
 - male 45%–52%

Composition of Plasma

- Water 90-92%
- Gases (oxygen, carbon dioxide, nitrogen etc.)
- Solids
 - Organic substances
 - Plasma proteins and amino acids
 - Non-protein **nitrogenous** substances
 - Carbohydrates
 - Fats
 - Hormones, enzymes, antibodies

Inorganic substances (sodium, calcium, potassium, magnesium, carbonate, chloride, phosphate, etc.)

Functions of Plasma Proteins

- Transport of various substances in the blood
- Maintenance of **osmotic pressure** in blood
- Regulation of acid-base balance (responsible for 15% of the buffering capacity of blood)
- Provide viscosity to the blood (important to maintain the blood pressure)
- Role in suspension stability of red blood cells (red blood cells remain suspended uniformly in the blood)
- Coagulation of blood (clot formation)
- **Defense** mechanism of body (as antibodies)
- Reserve proteins (utilized by the body tissues as the last source of energy)

Plasma Proteins

Albumins (60%, 4.7 g/100 ml)

- transport of fatty acids, thyroid and steroid hormones, osmotic pressure
- Globulins (35%, 2.3 g/100 ml)
- gamma globulins antibodies, also called immunoglobulins
- alpha and beta globulins transport globulins (small molecules): hormone-binding proteins, metalloproteins, apolipoproteins (lipoproteins), and steroid-binding proteins
- normal albumin/globulin (A/G) ratio 2 : 1

Fibrinogen (4%, 0.3 g/100 ml)

- form clots and produce long, insoluble strands of fibrin
- plasma without fibrinogen is called serum
 Other Plasma Proteins
- 1% of plasma
- enzymes, hormones, and prohormones

Normal Plasma Values

Organic Molecules

- Protein (total) 6.0–8.4 g/100 ml
- Cholesterol 120–220 mg/100 ml
- Glucose 70–110 mg/100 ml (fasting)
- Lactic acid 0.6–1.8 mmol/l
- Triglyceride 40–150 mg/100 ml
- Uric acid 3–7 mg/100 ml
- Creatinine 0.5–1.5 mg/100 ml
- Bilirubin 0.5–1.5 mg/100 ml

lons

- Bicarbonate 24–30 mmol/l
- Calcium 2.1–2.6 mmol/l
- Chloride 100–106 mmol/l
- Potassium 3.5–5.0 mmol/l
- Sodium 135–145 mmol/l

Chemical and physical properties of the Blood

- pH: 7.4 (slightly alkaline and its pH in normal conditions)
- Specific gravity:
 - Specific gravity of total blood : 1.052 to 1.061 g/ml
 - Specific gravity blood cells : 1.092 to 1.101 g/ml
 - Specific gravity of plasma : 1.022 to 1.026 g/ml
- Viscosity: five times more viscous than water, mainly due to red blood cells and plasma proteins
- Blood osmolality 280–296 mOsm
- Erythrocyte sedimentation rate (ESR) shows the suspension stability of RBCs
 - In males: 3 to 7 mm in 1 hour
 - In females: 5 to 9 mm in 1 hour

pH homeostasis of the blood

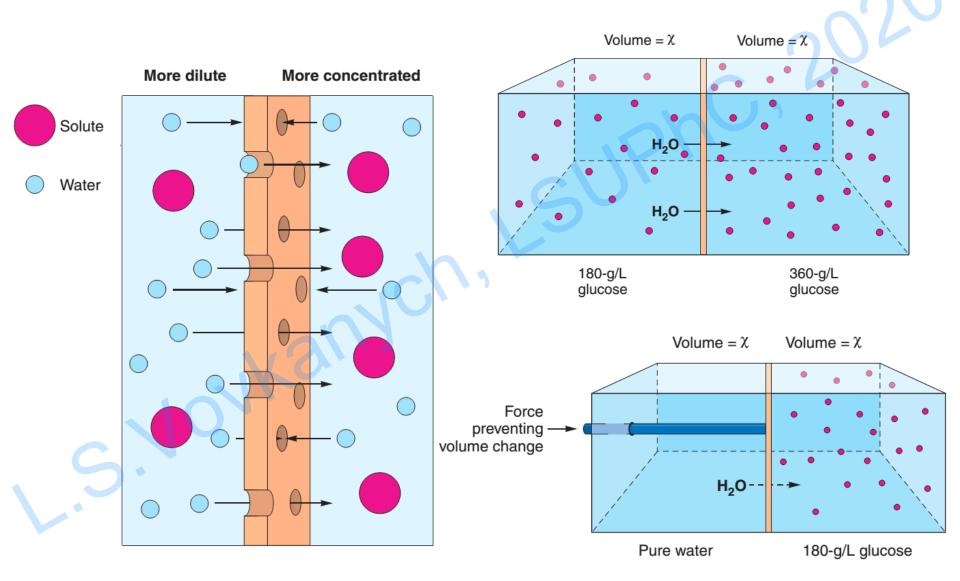
The pH (negative logarithm of H⁺ concentration) is another term for H⁺ concentration

- increase in H⁺ ion concentration decreases the pH (acidosis)
- reduction in H⁺ concentration increases the pH (alkalosis)
- Changes in pH below 7.38 or above 7.42 will cause serious threats to many physiological functions

Acid-base Buffer System

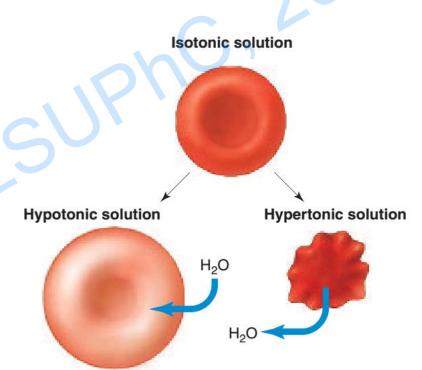
- Bicarbonate buffer system (is not powerful, but plays an important role because the concentration of two components (HCO₃- and CO₂) of this buffer system is regulated separately by two different organs by kidney and respiratory system)
- **Phosphate** buffer system (more powerful than bicarbonate)
- Protein buffer system (present both in the plasma and erythrocytes; hemoglobin is the most effective protein buffer and the major buffer in blood)

Osmotic Pressure


Osmotic pressure is the pressure created by the solutes

- Osmosis is passive transport, when water or any other solvent moves from the area of lower concentration to the area of higher concentration
- This creates a pressure which is known as osmotic pressure
- Osmolality depends on the concentration of osmotically active substance in the solution
- Osmolarity is the number of particles (osmoles) per liter of solution (osmoles/L)

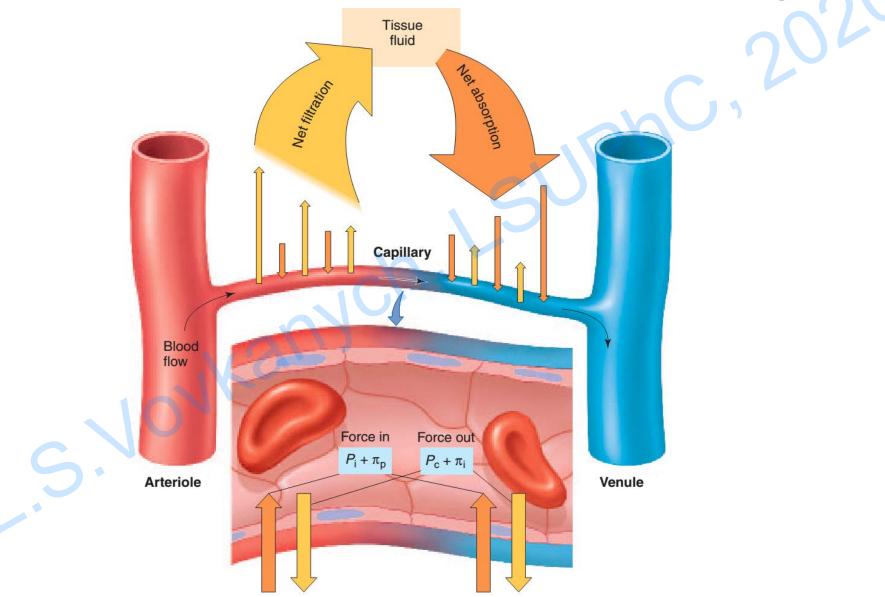
Tonicity is the measure of effective osmolality, the solutions can be classified into three categories:


- Isotonic fluid
- Hypertonic fluid
- Hypotonic fluid

A Model Of Osmotic Pressure

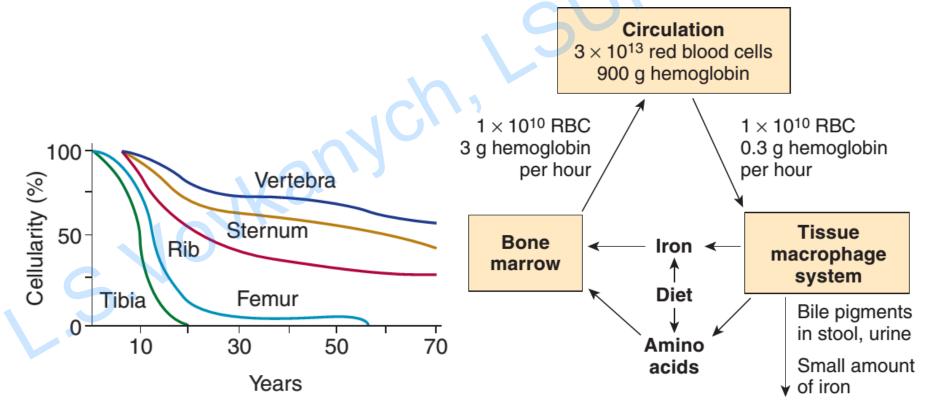


Red Blood Cells in Solutions with Different Tonicity


- Isotonic fluids have the same effective osmolality (tonicity) as body fluids (0.9% sodium chloride solution and 5% glucose solution). Red blood cells in isotonic fluid neither gain nor lose water
- Hypertonic fluids greater effective osmolality, water moves out of the cells resulting in shrinkage of the cells
- Hypotonic fluids with less effective osmolality, water moves into the cells and causes swelling and rupture (hemolysis)

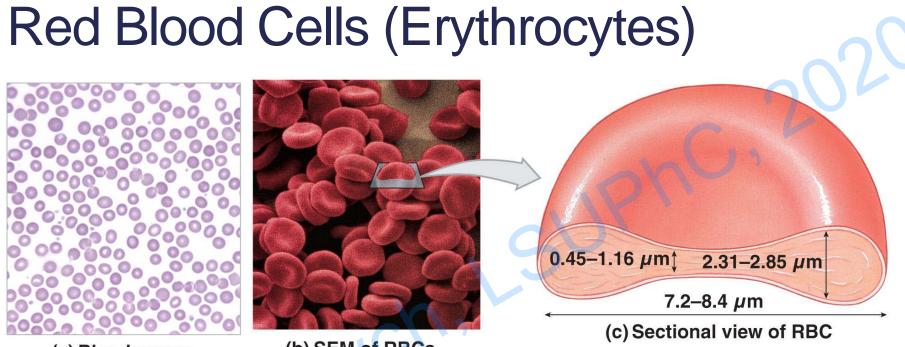
Red Blood Cells in Solutions with Different Tonicity

Osmotic Pressure and Water Transport



The Formed Elements (Cells) of Blood

Cell	Cells/µL (average)	Normal Range (1/µL)	Erythrocytes
ErythrocytesMalesFemales	5.4 × 10 ⁶ 4.8 × 10 ⁶		
Leukocytes (white blood cells)	9000	4000–10,000	Leukocytes
Granulocytes		C'''	
Neutrophils	5400 (50-70%)	3000–6000	- Massillard
Eosinophils	275 (1-4%)	150–300	
Basophils	35 (0.4%)	0–100	
Lymphocytes	2750 (20– 40%)	1500–4000	
Monocytes	540 (2–8%)	300–600	Platelets
Platelets	300,000	200,000– 500,000	

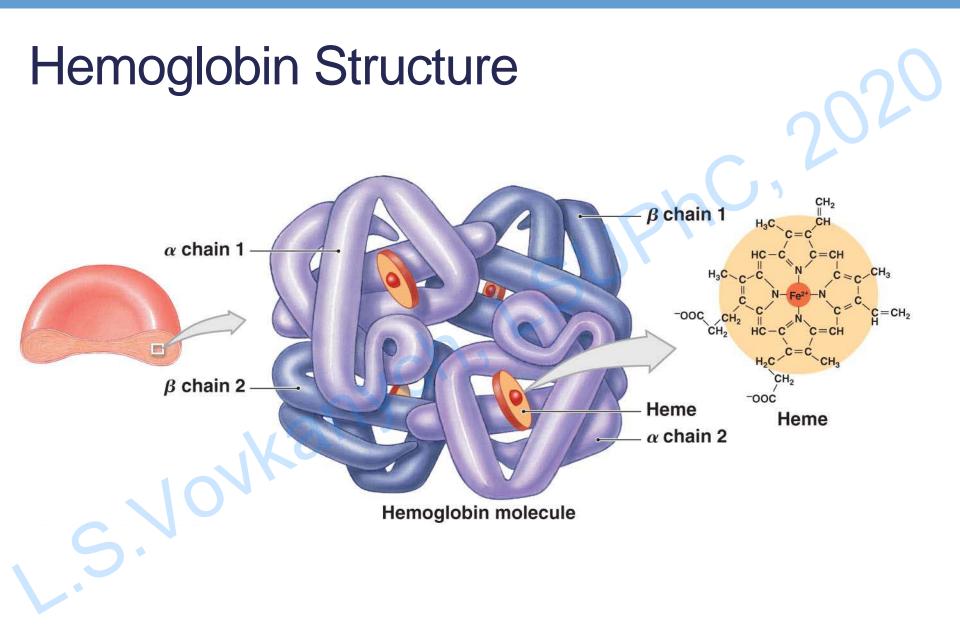

Red Blood Cells (Erythrocytes)

- In the adult, red blood cells, many white blood cells, and platelets are formed in the bone marrow
- Cellular marrow is called red marrow; inactive marrow that is infiltrated with fat is called yellow marrow

Red Blood Cells (Erythrocytes)

- RBCs are the non-nucleated formed elements in the blood
- Diameter : 7.2 μm (6.9 to 7.4 μm)
- Red color is due to the presence of the hemoglobin
 - Concentration of Hemoglobin (Hb) 16-14 g/dL (male/female)
 - Mean corpuscular hemoglobin (MCH) 29 pg
 - Totally 70-kg man has about 900 g of hemoglobin
- Average lifespan of RBC: 120 days
- 3 million RBCs per second is formed
- Building red blood cells requires
 - Amino acids
 - Iron
 - Vitamins B12, B6, and folic acid:
- Functions of red blood cells
 - Transport of Oxygen and Carbon Dioxide
 - Buffering Action in Blood

(a) Blood smear


(b) SEM of RBCs

• RBCs are disk shaped and biconcave (dumbbell shaped)

- helps rapid diffusion of oxygen into the interior of the cell
- large surface area is provided
- squeeze through the capillaries very easily discs form stacks called rouleaux (smooth the flow through narrow blood vessels)

Hemoglobin Structure

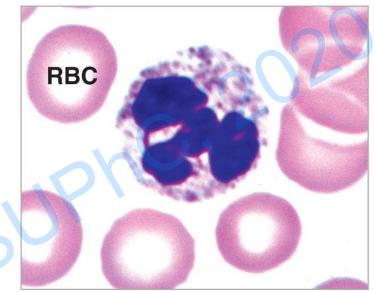
- Protein with complex quaternary structure
- Four globular protein subunits:
 - Each with one molecule of heme
 - Each heme contains one iron ion
- Associate easily with oxygen (oxyhemoglobin)
- Dissociate easily from oxygen (deoxyhemoglobin)
- Binds carbon dioxide (carbaminohemoglobin)
- Abnormal hemoglobin derivatives
 - Carboxyhemoglobin complex with carbon monoxide
 - Methemoglobin iron molecule of hemoglobin is oxidized

White Blood Cells (Leukocytes)

- Colorless formed elements of blood
- Have nucleus of different shape
- Based on the presence or absence of granules in the cytoplasm, the leukocytes are classified into two groups:
 - Granulocytes which have granules
 - **Neutrophils** with granules taking both acidic and basic stains.
 - Eosinophils with granules taking acidic stain.
 - Basophils with granules taking basic stain
 - Agranulocytes which do not have granules
 - Monocytes
 - Lymphocytes

Properties of white blood cells

- Diapedesis process by which the leukocytes squeeze through the narrow blood vessels
- Amebic movement most pronounced in neutrophils, monocytes and lymphocytes
- Chemotaxis attraction of WBCs towards the injured tissues by the chemical substances
- Phagocytosis process, by which neutrophils and monocytes engulf ("eat up") the foreign bodies


Neutrophils

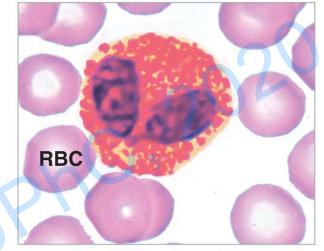
Structure

- diameter 10 to 12 µm
- small granules in the cytoplasm
- nucleus is multilobed
- in younger cells, the nucleus is not lobed.
- in older neutrophils, the nucleus has 2 to 5 lobes
- lifespan 2-5 days

Function:

- neutrophils provide the first line of defense against the invading microorganisms, destroy them by means of phagocytosis
- release cytotoxic enzymes and chemicals

(a) Neutrophil


Eosinophils

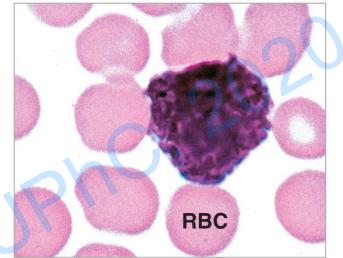
Structure

- diameter 10 and 14 µm
- larger granules in the cytoplasm, which stain pink or red with eosin
- nucleus is bilobed
- lifespan: 7-12 days

Function

- play an important role in the defense mechanism of the body against the parasites
- increases also during allergic diseases
- are responsible for detoxification, disintegration and removal of foreign proteins
- release the cytotoxic substances present in their granules

(b) Eosinophil


Basophils

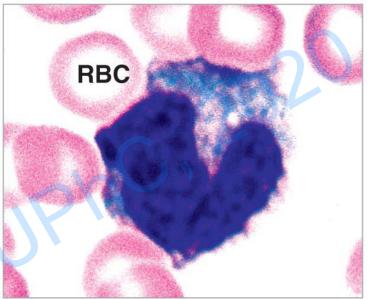
Structure

- diameter 8 to 10 µm
- nucleus is bilobed
- have coarse granules in the cytoplasm
- stain purple blue with methylene blue
- lifespan: 5-12 days

Function

- play an important role in healing processes and in allergy reactions
- releases:
 - heparin (essential to prevent the intravascular blood clotting)
 - histamine (causing vascular and tissue responses)
 - cytotoxic chemcals

(c) Basophil


Monocytes

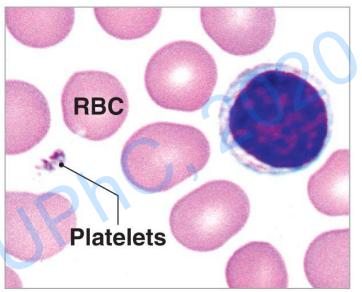
Structure

- the largest leukocytes with diameter of 14 to 18 µm
- cytoplasm is clear without granules
- nucleus is round, oval, bean shaped or kidney shaped
- lifespan: 2-5 days

Function

- enter the tissues from the blood and become tissue macrophages
- neutrophils provide the first line of defense
- are motile and phagocytic in nature

(d) Monocyte


Lymphocytes

Structure

- younger cells has a diameter of 10 to 12 μm, older cells – 7 to 10 μm
- do not have granules in the cytoplasm
- nucleus is oval, bean-shaped or kidneyshaped
- lifespan: approx. 1 day

Function

- provide defense against the specific pathogens
- depending upon the function, lymphocytes are
- divided into two types:
 - **T lymphocytes**: cells concerned with cellular immunity
 - B lymphocytes: cells concerned with humoral immunity

(e) Lymphocyte

Physiological Variations

- Leukocytosis is the increase in total WBC count
- Leukopenia is the decrease in total WBC count

Physiological changes in the stage of:

- Exercise: Increases slightly
- Sleep: Decreases
- Emotional conditions like anxiety: Increases
- Pregnancy: Increases

Pathological Variations

Leukocytosis

- Infections
- Allergy
- Common cold
- Tuberculosis
- Leukemia abnormal and uncontrolled increase in leukocyte count more than 1,000,000 µm

Leukopenia

- Anaphylactic shock
- Cirrhosis of liver
- Disorders of spleen
- Viral infections

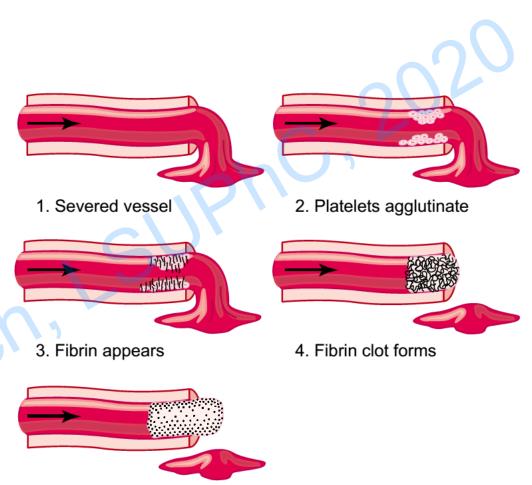
Variation in Differential Leukocyte Count

Neutrophilia

- Acute infections
- Metabolic disorders
- Injection of foreign proteins
- Poisoning by chemicals
- Eosinophilia asthma and other allergic conditions
- Basophilia smallpox
- **Basopenia** stress
- Monocytosis tuberculosis, malaria
- Lymphocytosis diphtheria, infectious hepatitis etc.
- Lymphocytopenia AIDS

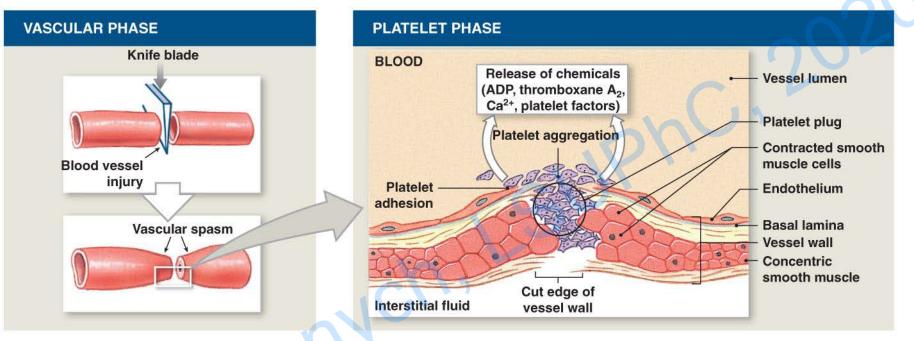
Platelets (Thrombocytes)

Structure


- diameter : 2.5 μm (2 to 4 μm)
- small colorless, non-nucleated bodies, are considered to be the fragments of cytoplasm
- lifespan: 10 days
- cytoplasm contains the cellular organelles and granules
 - alpha granules (clotting factors fibrinogen etc.)
 - dense granules (serotonin, calcium etc.)
 - other proteins: fibrin-stabilizing factor, platelet-activating factor, thrombosthenin etc.

Function

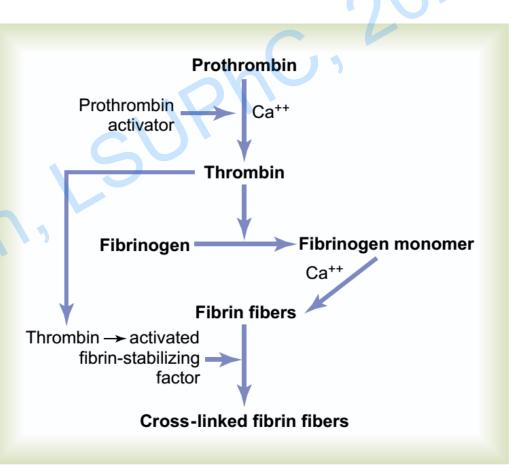
- are responsible for the formation of intrinsic prothrombin activator, responsible for the onset of blood clotting
- release important clotting chemicals, temporarily patch damaged vessel walls, actively contract tissue after clot formation


Hemostasis

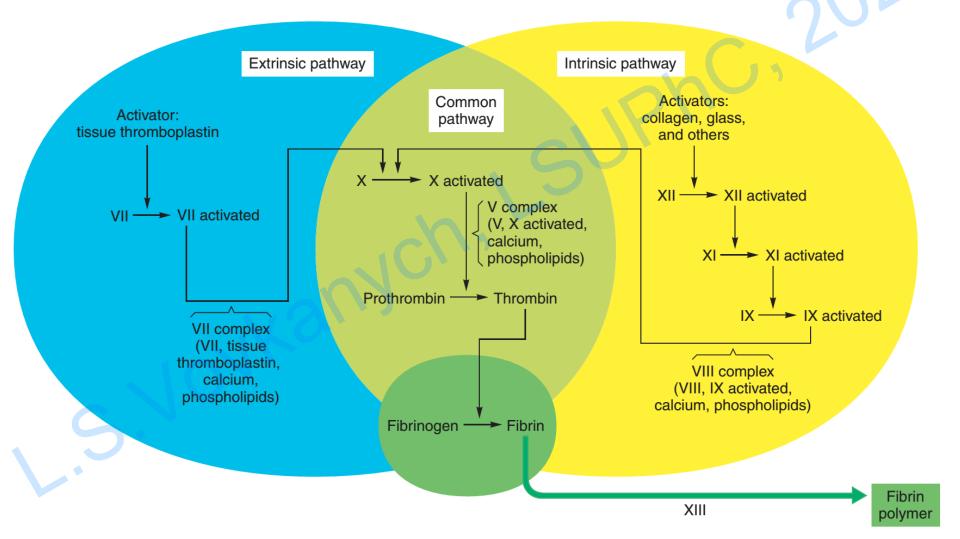
- Hemostasis is the cessation of bleeding
- Consists of three phases
 - Vascular phase (vascular spasm that lasts 30 minutes)
 - Platelet phase (begins within 15 seconds after injury)
 - Platelet adhesion (attachment)
 - Platelet aggregation (stick together)
 - Forms platelet plug
 - Coagulation phase

5. Clot retraction occurs

Hemostasis


- Activated platelets release clotting compounds
 - Adenosine diphosphate (ADP)
 - Thromboxane A2 and serotonin
 - Clotting factors
 - Platelet-derived growth factor (PDGF)
 - Calcium ions

The Coagulation Phase


- Begins 30 seconds or more after the injury
- Blood clotting (coagulation) is the cascade reactions:
 - chain reactions of enzymes and proenzymes
 - form three pathways
 - convert circulating fibrinogen into insoluble fibrin
- Clotting Factors (13 of them), also called procoagulants
 - Proteins or ions in plasma
 - Required for normal clotting
- After clot has formed platelets contract and pull torn area together

Three Coagulation Pathways

- Extrinsic pathway begins in the vessel wall
- Intrinsic pathway begins with circulating proenzymes
- Common pathway converge of both pathways:
 - Forms enzyme
 prothrombinase
 - Converts prothrombin to thrombin
 - Thrombin converts
 fibrinogen to fibrin

Extrinsic and Intrinsic Clotting Pathways

Anticoagulants

Substances which prevent or postpone coagulation of blood

- Heparin naturally produced anticoagulant in the body
- **Coumarin** derivatives (dicoumoral and warfarin)
- Ethylenediaminetetraacetic acid (EDTA)
- Oxalate compounds
- Citrates of sodium, ammonium and potassium
- Hirudin natural from the leach Hirudinaria manillensis

Anticlotting Mechanism in the Body

Under physiological conditions, intravascular clotting does not occur, because of:

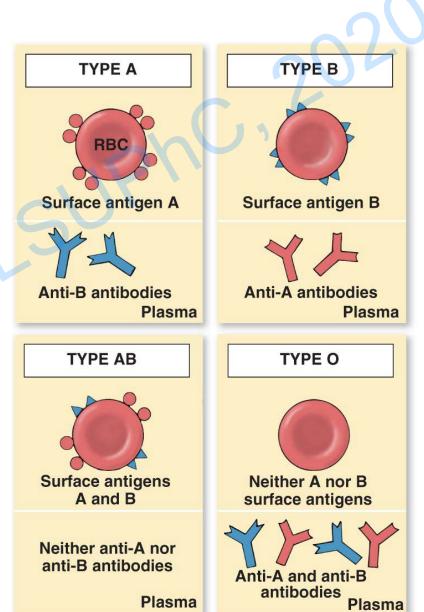
- continuous circulation of blood
- smooth endothelial lining of the blood vessels
- presence of natural anticoagulant (heparin)
- production of thrombomodulin
- all the clotting factors are in inactive state
- **Thrombosis** or intravascular blood clotting refers to coagulation of blood inside the blood vessels
- Complications of thrombosis
- embolus thrombus or part of it, which arrests the blood flow
- ischemia insufficient blood supply to an organ or area of the body by the obstruction of blood vessels is called
 - **necrosis** tissue death caused by loss of blood supply

Fibrinolysis

- Fibrinolysis lysis of blood clot inside the blood vessel
- It helps to remove the clot from lumen of the blood vessel
- This process requires a substance called plasmin or fibrinolysin
- Plasmin is formed from inactivated glycoprotein called plasminogen
- Reaction is started during intravascular clotting

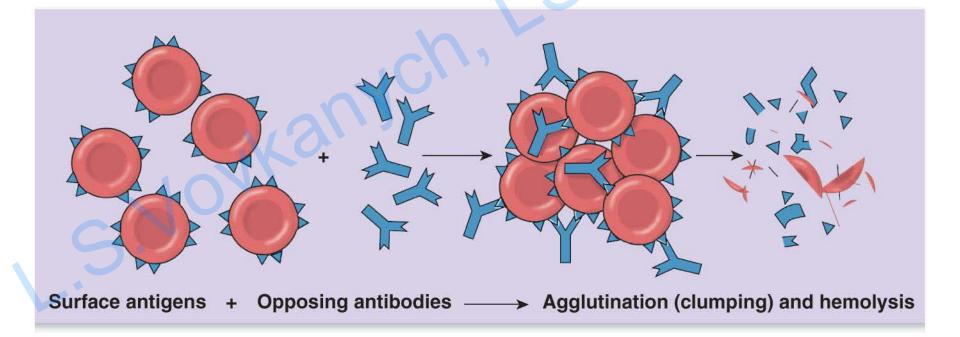
Blood Types

- The membranes of human red cells contain a variety of blood group antigens, which are also called agglutinogens
- There are several groups of red blood cell antigens, but the major groups are known as the ABO system and Rh system
- The most important and best known of blood group antigens are the A, B and D (Rh) antigens
- Plasma antibodies attack and agglutinate (clump) foreign antigens

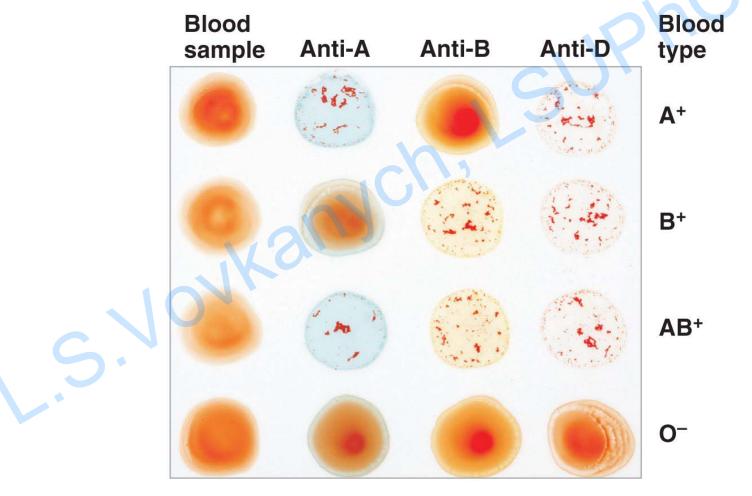

Main Blood Types

Four Basic Blood Types in ABO system

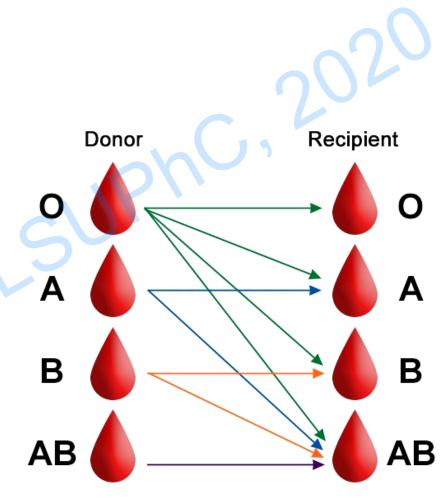
- A (surface antigen A)
- B (surface antigen B)
- AB (antigens A and B)
- O (neither A nor B)


Two Basic Blood Types in Rh System

- Rh positive (Rh+)
- Rh negative (Rh-)
- Only sensitized Rh- blood has anti-Rh antibodies


Cross-Reactions in Transfusions

- Plasma antibody meets its specific surface antigen
- Blood will agglutinate and hemolyze
- Occur if donor and recipient blood types not compatible


Determination of ABO Group

Blood typing is done on the basis of agglutination with the standard serum

Blood transfusion

- only compatible blood must be used
- person who gives blood is called the **donor**
- person who receives the blood is called recipient
- compatibility is considered on
 - antigen of the donor
 - antibody of the recipient
- cross-matching is done by mixing the serum of the recipient and the RBCs of donor
- people with O group are called 'universal donors'
- people with AB group are called 'universal recipients'

References

Martini R., Nath J. Fundamentals of Anatomy & Physiology. Eighth Edition

Guyton, Arthur C. **Textbook of medical physiology** / Arthur C. Guyton, John E. Hall. - 11th ed.

Sembulingam K., Sembulingam P. Essentials of Medical Physiology. Sixth Edition

Scanlon, Valerie C. **Essentials of anatomy and physiology** / Valerie C. Scanlon, Tina Sanders. — 5th ed.

Fox: Human Physiology. Eighth Edition

Silbernagl S., Despopoulos A. Color Atlas of Physiology. 6th edition