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The relationship between the regular behavior of the logarithmic derivative of zero-order
entire function f with zeros on a finite system of curves of regular rotation for f and the
existence of υ-density of zeros of f along such curves is investigated.

1. Introduction. Let H+(ρ) be the class of entire functions f with positive order ρ, ρ(r) be
a proximate order of f , ρ(r) → ρ as r → +∞. The creation by B. Levin and A. Pflüger of
the theory of functions of completely regular growth (c.r.g.) for the class H+(ρ) became the
main event of 20th century in the theory of analytic functions. In the case of noninteger ρ
the function f ∈ H+(ρ) is of c.r.g. if and only if zeros of f have angular density with respect
to the comparison function V (r) = rρ(r).

Asymptotics and evaluations of the logarithmic derivative F (z) = zf ′(z)/f(z) of entire
functions f outside exceptional sets play an important role in various fields of mathematics.
Estimation of the modulus of the logarithmic derivative is important in the Nevanlinna
theory and its applications to differential, functional and difference equations. Respectively
necessary and sufficient conditions of affiliation f ∈ H+(ρ) to the set of functions of c.r.g. in
terms of the logarithmic derivative are found in [3] and [5]< respectively.

In [1] there is generalized the theory of functions of c.r.g. in the case of the arrangement
of zeros along curves of regular rotation (c.r.r.) and in particular along logarithmic spirals.
We note that the asymptotics of canonical products with zeros lying on one ray or on c.r.r.
is substantially used in [3] and [1], respectively.

From the results of [6] it follows that if we similarly introduce the notion of c.r.g. for
the class H0 of zero-order entire functions, then the obtained theory becomes ineffective.
Indeed, c.r.g. of f ∈ H0 is independent of the arguments of its zeros and depends only on
their moduli; c.r.g. in C follows from c.r.g. on one ray; indicator of an entire function f of
c.r.g. from the class H0 is a positive constant. The notion of strongly regular growth (s.r.g.)
was introduced by the first author of this article in the 90th of the last century for the class
H0, which has features similar to the features of functions of c.r.g. from the class H+(ρ)
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([8]). Criteria of s.r.g. for functions f ∈ H0 in terms of quantities related to their logarithmic
derivatives are found in [10, 11].

In this paper we consider the question of the connection between the regular behavior of
the logarithmic derivative of a function f of the classH0, with zeros on c.r.r. and the existence
of υ-density of zeros of f along such curves. We note that the Valiron-type and Valiron-
Titchmarsh-type theorems on the relationship between the regular behavior of logarithm of
f , which belongs to the class H0, and the asymptotics of the counting function of zeros of
f , which are located on a logarithmic spiral, are proved in [9].

2. Definitions and main results. By L we denote the class of nonnegative continuously
differentiable increasing to +∞ on R+ functions υ such that ψ(r; υ) := rυ′(r)/υ(r) → 0 as
r → +∞. It is well known that accurate to equivalent functions the class L coincides with
the class of slowly increasing functions. Note also that functions υ of the class L is of order
zero, namely

lim
r→+∞

ln+ υ(r)/ ln r = 0.

We denote by H0(υ) the class of entire functions of order zero, the counting function
n(r) = n(r, 0, f) of which zeros satisfies the condition n(r) = O (υ(r)) , r → +∞. For θ ∈ R,
1 ≤ a < +∞ we set lγθ (a, r) = {z = tei(θ+γ(t)) : a ≤ t ≤ r}, lγθ (1,+∞) = lγθ , where γ(t) is a
real-valued function defined on [a, r].

Definition. We say that the curve lγθ is called a curve of regular rotation (c.r.r.) for f ∈ H0(υ)
if γ(t) is continuously differentiable on [1,+∞) function such that (c ∈ R)

tγ′(t)− c = o (ψ(t; υ)) , t→ +∞. (1)

Let

Γγ
m = Γγ

m(f) =
m∪
j=1

lγθj , −π ≤ θ1 < θ2 < . . . < θm < π,

be a finite system of c.r.r. lγθj for f, h(φ; θj) = φ− θj − π for φ ∈ (θj, θj + 2π), ĥj(φ) be the
2π-periodic continuation of the function h(φ; θj) from (θj, θj + 2π) to R,

hf (φ) =
m∑
j=1

∆jĥj(φ)

for φ ∈ [−π, π), ∆j > 0, φ ̸= θj, n(r; θj) = n(r, 0, f ; θj) be the number of zeros of f , which
lie on lγθj , in the disk {z : |z| ≤ r}, ∆ = ∆1 + . . .+∆m. We denote by

Dγ(r;α, β) =
∪

α≤φ<β

lγφ(1, r)

the curvilinear sector, −π ≤ α < β ≤ π.
We will say that zeros of f ∈ H0(υ), υ ∈ L, have υ-density ∆γ(α, β) along c.r.r. lγφ for f ,

if for all α, β ∈ [−π, π] except possibly a countable set the limit

lim
r→+∞

nγ(r;α, β)

υ(r)
= ∆γ(α, β)

exists, where nγ(r;α, β) is the number of zeros which lie in the curvilinear sector Dγ(r;α, β).
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By H0(υ,Γ
γ
m) we denote the subclass of functions of the class H0(υ) with zeros on Γγ

m.
For υ̃ ∈ L we set

υ(r) =

∫ r

1

υ̃(t)

t
dt.

It is easy to see that υ ∈ L, υ̃(r) = o(υ(r)), r → +∞.

Theorem 1. Let υ̃ ∈ L, f ∈ H0(υ,Γ
γ
m), z = rei(φ+β(r)), β(r)− γ(r) → 0 as r → +∞. If for

j = 1,m
n(r; θj) = ∆jυ(r) + o (υ̃(r)) , r → +∞, (2)

then for φ ∈ [−π, π), φ ̸= θj,

F (z) = ∆υ(r) +
i

1 + ic
hf (φ)υ̃(r) + o (υ̃(r)) , r → +∞, (3)

moreover, the asymptotic relation (3) holds uniformly relative to φ ∈ [−π, π), |φ− θj| ≥ δ,
0 < δ < 1.

Theorem 2. Let υ̃ ∈ L, f ∈ H0(υ,Γ
γ
m) and the asymptotic relation (3) holds with some

function G(φ) instead of the function hf (φ), G ∈ L1[0, 2π]. Then zeros of f have υ-density
along c.r.r. lγφ for f , moreover, for all

α, β ∈ [−π, π) \

{
m∪
j=1

θj

}
: ∆γ(α, β) =

1

2π

(
G(α)−G(β) + ∆(β − α)

)
. (4)

Remark 1. Under conditions of Theorem 1 if instead of (2) the following condition holds
(j = 1,m)

n(r; θj) = ∆jυ(r) + o (υ(r)) , r → +∞,

then for φ ∈ [−π, π), φ ̸= θj,

F (z) = ∆υ(r) + o (υ(r)) , r → +∞.

3. Additional results. Without loss of generality, for υ ∈ L, f ∈ H0(υ) we assume that
υ(r) = 0 as 0 ≤ r ≤ 1, f(0) = 1. To prove Theorems 1-2 we will use following results, which
we formulate as lemmas.

Lemma 1. Let υ ∈ L, w ∈ lγ−π, β(t) − γ(t) → 0 as t → +∞ and let α(t) be piecewise
continuous function on [1,+∞), α(t) → 0 as t→ +∞. Then for z = rei(φ+β(r)), −π < φ < π,
we have

J1 = z

∫
lγ−π

α(|w|)υ(|w|)
(w − z)2

dw = o(υ(r)), r → +∞; (5)

J2 =

∫
lγ−π(1,r)

α(|w|)υ(|w|)
w − z

dw = o(υ(r)), r → +∞; (6)

J3 = z

∫
lγ−π(r,+∞)

α(|w|)υ(|w|)
w(w − z)

dw = o(υ(r)), r → +∞, (7)

moreover, the above relations hold uniformly relative to φ ∈ [−π + δ, π − δ], 0 < δ < 1.
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Proof. Let ε > 0 be an arbitrary fixed number, K1, K2, . . . be positive constants. We set
η = e−δ/(4|c|) with c = lim

t→+∞
(tγ′(t)). If c = 0, then we assume η = 1/2. Since dw =

(1 + itγ′(t)) ei(−π+γ(t))dt, we get

|J1| ≤ r

∫ +∞

1

|α(t)|υ(t)
|w − z|2

|1 + itγ′(t)| dt ≤ K1r

(∫ ηr

1

+

∫ r/η

ηr

+

∫ +∞

r/η

)
|α(t)|υ(t)
|w − z|2

dt =

= J1,1 + J1,2 + J1,3.

Since
|w − z| ≥

∣∣|w| − |z|
∣∣ = |t− r|,

∫ τ

1

|α(t)|dt = o(τ), τ → +∞,

we have

|J1,1| ≤ K1r

∫ ηr

1

|α(t)|υ(t)
(r − ηr)2

dt ≤ K2
υ(r)

r

∫ ηr

1

|α(t)|dt < ε

3
υ(r), r ≥ r1.

Similarly,

|J1,3| ≤ K1r

∫ +∞

r/η

|α(t)|υ(t)

t2
(
1− r

t

)2dt ≤ K2r

∫ +∞

r/η

|α(t)|υ(t)
t2

dt <
ε

3
υ(r), r ≥ r2,

because ∫ +∞

τ

|α(t)|υ(t)
t2

dt = o

(
υ(τ)

τ

)
, τ → +∞.

Taking into account [2, p. 605] that for arbitrary b > 0

lim
t→+∞

(γ(bt)− γ(t)) = c ln b,

for t ∈ [ηr, r/η] we obtain

φ̃ = φ+ β(r)− γ(t) = φ+
(
β(r)− γ(r)

)
+
(
γ(r)− γ(t)

)
→ φ+ c ln b∗

as r → +∞, b∗ ∈ [η, 1/η]. If φ ∈ [−π + δ, π − δ] then for r ≥ r3

φ̃ ≥ (φ+ c ln b∗)− δ

2
≥ −π +

δ

2
− |c ln b∗| ≥ −π +

δ

2
− |c| ln eδ/(4|c|) = −π +

δ

4
,

φ̃ ≤ (φ+ c ln b∗) +
δ

2
≤ π − δ

2
+ |c| ln eδ/(4|c|) = π − δ

4
,

and therefore |φ̃| ≤ π − δ
4
. Owing to inequality (see for example [4, p. 92])

∣∣t+ reiθ
∣∣ ≥

(t+ r) sin(δ1/2) as |θ| ≤ π − δ1, 0 < δ1 < 1, we obtain

|w − z| =
∣∣tei(−π+γ(t)) − rei(φ+β(r))

∣∣ = ∣∣t+ reiφ̃
∣∣ ≥ (t+ r) sin

δ

8
.

Let us put α∗(r) = sup{|α(t)| : ηr ≤ t ≤ r/η}. Since α∗(r) → 0 as r → +∞ we have for
r ≥ r4

|J1,2| ≤ K1r

∫ r/η

ηr

|α(t)|υ(t)dt
(t+ r)2 sin2(δ/8)

≤ K2α
∗(r)υ(r/η)r

∫ r/η

ηr

t−2dt ≤ K3α
∗(r)υ(r)<

ε

3
υ(r).

Using the estimates obtained for J1,k, k = 1, 2, 3, we deduce that |J1| < ευ(r) as r ≥
r5 = max{rj : 1 ≤ j ≤ 4}, φ ∈ [−π+ δ/8, π− δ/8], proving (5). The relations (6), (7) can be
proved similarly. Lemma 1 is proved.
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Let υ ∈ L, tγ′(t) = c + ψ̃υ(t) with ψ̃υ(t) = α(t)ψ(t; υ), α(t) → 0 as t → +∞ (see (1)),
k ∈ N ∪ {0}. We set

Ak(τ, υ) =

∫ τ

1

υ(t)tkei(k+1)γ(t)dt, Bk(τ, υ) =

∫ +∞

τ

υ(t)t−k−2e−i(k+1)γ(t)dt.

Lemma 2. If υ̃ ∈ L, then

Ak(τ, υ) =
1

1 + ic

(
υ(τ)τ k+1

k + 1
ei(k+1)γ(τ) − 1

k + 1
Ak(τ, υ̃)− iAk(τ, υψ̃υ)

)
, (8)

Bk(τ, υ) =
1

1 + ic

(
υ(τ)τ−k−1

k + 1
e−i(k+1)γ(τ) +

1

k + 1
Bk(τ, υ̃)− iBk(τ, υψ̃υ)

)
. (9)

Proof. Integrating by parts we obtain

Ak(τ, υ) =
υ(t)tk+1

k + 1
ei(k+1)γ(t)

∣∣∣∣τ
1

− 1

k + 1

∫ τ

1

tk+1ei(k+1)γ(t)
(
υ′(t) + i(k + 1)γ′(t)υ(t)

)
dt =

=
υ(τ)τ k+1ei(k+1)γ(τ)

k + 1
− 1

k + 1

∫ τ

1

(tυ′(t))tkei(k+1)γ(t)dt− i

∫ τ

1

υ(t)(tγ′(t))tkei(k+1)γ(t)dt =

=
υ(τ)τ k+1ei(k+1)γ(τ)

k + 1
− 1

k + 1
Ak(τ, υ̃)− icAk(τ, υ)− iAk(τ, υψ̃υ).

Moving the expression (−icAk(τ, υ)) to the left-hand side of the equality and dividing
both sides into the multiplier (1 + ic) we find (8).

The relation (9) can be obtained similarly. Thus, Lemma 2 is proved.

Lemma 3. Let υ̃ ∈ L, w ∈ lγ−π, β(r) − γ(r) → 0 as r → +∞, 0 < δ < 1. Then for
z = rei(φ+β(r)) the following relations hold uniformly relative to φ ∈ [−π+δ, π−δ] (r → +∞)

I1 = z

∫
lγ−π(1,r)

υ(|w|)
(z − w)2

dw = (1 + ic) lim
ε→0+

+∞∑
k=0

(−1)k+1(k+1)

zk+1
Ak ((1−ε)r, υ) + o(υ̃(r)); (10)

I2 = z

∫
lγ−π(r,+∞)

υ(|w|)
(z−w)2

dw = (1+ic) lim
ε→0+

+∞∑
k=0

(−1)k+1(k+1)

z−k−1
Bk ((1+ε)r, υ) + o(υ̃(r)); (11)

I3 =

∫
lγ−π(1,r)

υ(|w|)dw
z − w

= (1 + ic) lim
ε→0+

+∞∑
k=0

(−1)k+1

zk+1
Ak ((1− ε)r, υ) + o(υ̃(r)); (12)

I4 = z

∫
lγ−π(r,+∞)

υ(|w|)dw
w(z − w)

= (1 + ic) lim
ε→0

+∞∑
k=0

(−1)k+1

z−k−1
Bk ((1 + ε)r, υ) + o(υ̃(r)). (13)

Proof. We have w= tei(−π+γ(t)), dw=(1 + itγ′(t))ei(−π+γ(t))dt = (1 + ic+ iψ̃υ(t))e
i(−π+γ(t))dt

and so that owing (5)

I1 =
1

z

∫ r

1

υ(t)(1 + ic+ iψ̃υ(t))e
i(−π+γ(t))(

1− w

z

)2 dt =
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= (1 + ic) lim
ε→0+

∫ (1−ε)r

1

(
υ(t)ei(−π+γ(t))

z

+∞∑
k=0

(k + 1)
(w
z

)k)
dt+

+iz

∫
lγ−π(1,r)

(α(t)/ (1 + itγ′(t))) υ̃(t)

(z − w)2
dw =

= (1 + ic) lim
ε→0+

+∞∑
k=0

(−1)k+1(k + 1)

zk+1
Ak ((1− ε)r, υ) + o(υ̃(r)), r → +∞.

The relations (11)–(13) can be found similarly. Lemma 3 is proved.

The set E ⊂ [0,+∞) is called an E0-set if mes (E ∩ [0, r]) = o(r), r → +∞. By Lemmas 4
and 5 from [8] we obtain the following proposition.

Lemma 4. Let υ ∈ L, 0 < δ < 1, θ ∈ [−π, π), f ∈ H0(υ). Then there exists E0-set E such
that

r

∫ θ+δ

θ−δ

∣∣∣∣f ′ (reiφ)

f (reiφ)

∣∣∣∣ dφ = O (υ(r))

(
δ + δ ln

(
1 +

1

δ

))
, r → +∞, r /∈ E.

4. Proof of main results.

Proof of Theorem 1. At first we assume that zeros of f ∈ H0(υ) are located on c.r.r. lγ−π

for f . If (an)
+∞
n=1 is a sequence of zeros of f , 0 < |a1| ≤ |a2| ≤ . . . ≤ |an| ≤ . . .→ +∞, then

f(z) =
+∞∏
n=1

(
1− z

an

)
, ln f(z) =

+∞∑
n=1

ln

(
1− z

an

)
,

where ln(1− z
an
) is a single-valued branch in (C\ lγ−π) of the multivalued function Ln(1− z

an
)

such that ln(1− z
an
)|z=0 = 0. For z = rei(φ+β(r)), −π < φ < π, we have (see (10),(11))

F (z) = z
f ′(z)

f(z)
= z

+∞∑
n=1

1

z − an
= z

∫
lγ−π

1

z − w
dn(|w|) = −z

∫
lγ−π

n(|w|)dw
(z − w)2

=

= −z
∫
lγ−π

n(|w|)− υ(|w|)
(z − w)2

dw − z

∫
lγ−π(1,r)

υ(|w|)dw
(z − w)2

− z

∫
lγ−π(r,+∞)

υ(|w|)dw
(z − w)2

= J̃ − I1 − I2.

(14)

Since n(r) = υ(r) + ε(r)υ̃(r), ε(r) → 0 as r → +∞, then owing to (5)

J̃ = −z
∫
lγ−π

ε(|w|)υ̃(|w|)
(z − w)2

dw = o(υ̃(r)), r → +∞. (15)

From (10) and (8) we obtain

I1 = lim
ε→0+

+∞∑
k=0

(−1)k+1(k+1)

zk+1

(
υ((1−ε)r)(1−ε)k+1rk+1

k+1
ei(k+1)γ((1−ε)r)− 1

k+1
Ak ((1−ε)r, υ̃)−

−iAk

(
(1− ε)r, υψ̃υ

))
+ o (υ̃(r)) = −υ(r) lim

ε→0+

(1− ε)ei(γ((1−ε)r)−β(r)−φ)

1 + (1− ε)ei(γ((1−ε)r)−β(r)−φ)
+
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+ lim
ε→0+

+∞∑
k=0

(−1)k

zk+1
Ak ((1− ε)r, υ̃) + i lim

ε→0+

+∞∑
k=0

(−1)k(k + 1)

zk+1
Ak

(
(1− ε)r, υψ̃υ

)
+ o (υ̃(r)) =

= −υ(r) ei(γ(r)−β(r)−φ)

1 + ei(γ(r)−β(r)−φ)
+ Σ1 + iΣ2 + o (υ̃(r)) , r → +∞.

Further, from (10), (5)

Σ2 =
−z

1 + ic

∫
lγ−π

α(|w|)υ̃(|w|)
(z − w)2

dw = o(υ̃(r)), r → +∞,

also, owing to (8), (12) and (6)

Σ1 =
1

1+ic
lim
ε→0+

+∞∑
k=0

(−1)k

zk+1

(
υ̃((1−ε)r)(1−ε)k+1rk+1

k + 1
ei(k+1)γ((1−ε)r)− 1

k+1
Ak ((1−ε)r, υ̃′ln)−

−iAk

(
(1− ε)r, υ̃ψ̃υ̃

))
=

1

1 + ic
υ̃(r) lim

ε→0+

+∞∑
k=0

(−1)k

k + 1

(
(1− ε)ei(γ((1−ε)r)−β(r)−φ)

)k+1 −

− 1

1 + ic
lim
ε→0+

+∞∑
k=0

(−1)k

(k + 1)zk+1
Ak ((1−ε)r, υ̃′ln)+

i

(1 + ic)2

∫
lγ−π(1,r)

ψ̃υ̃(t)υ̃(t)

z − w
dw + o (υ̃(r)) =

=
υ̃(r)

1 + ic
ln
(
1 + ei(γ(r)−β(r)−φ)

)
− 1

1 + ic
lim
ε→0+

Σε + o (υ̃(r)) , r → +∞.

Setting φ1(r) = φ+ β(r)− γ(r),

a∗k(r, υ) =
1

k + 1

∫ r

1

υ(t)tkdt,

by Lemma 3 from [7] we have

|Σε| ≤
+∞∑
k=0

1

(k + 1)rk+1

∫ r

1

υ̃′ln(t)t
kdt =

+∞∑
k=0

a∗k(r, υ̃
′
ln)

rk+1
= o (υ̃(r)) , r → +∞,

and hence

I1 = −υ(r)e
−iφ1(r)

1 + e−iφ1(r)
+

υ̃(r)

1 + ic
ln
(
1 + e−iφ1(r)

)
+ o (υ̃(r)) , r → +∞. (16)

Similarly using (11), (5), (9), (13), (7) and Lemma 3 from [7] one can obtain

I2 = − υ(r)

1 + e−iφ1(r)
− υ̃(r)

1 + ic
ln
(
1 + eiφ1(r)

)
+ o (υ̃(r)) , r → +∞. (17)

From (14)–(17) we have for z = rei(φ+β(r)), −π < φ < π,

F (z) = υ(r) +
1

1 + ic
ln

1 + eiφ1(r)

1 + e−iφ1(r)
υ̃(r) + o (υ̃(r)) = υ(r) +

1

1 + ic
iφ1(r)υ̃(r) + o (υ̃(r)) =

= υ(r) + i(1 + ic)−1φυ̃(r) + o (υ̃(r)) , r → +∞. (18)
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If zeros of f ∈ H0(υ) lies on c.r.r. lγθ , −π < θ < π, for f then by rotating the plane on
the angle (π + θ) in a clockwise direction, that is by substituting the quantity (φ − θ − π)
for φ in (18) uniformly relative to φ ∈ [θ+ δ, θ+2π− δ], 0 < δ < 1 the following asymptotic
relation holds

F
(
rei(φ+β(r))

)
= υ(r) + i(1 + ic)−1(φ− θ − π)υ̃(r) + o (υ̃(r)) , r → +∞.

Let f satisfy the assumptions of Theorem 1, namely zeros of f are located on Γγ
m(f)

and (2) holds. We represent f by a product of the form f = f1 · . . . · fm, where fj is an
entire function with zeros on c.r.r. lγθj , j = 1,m. Then for z ∈ (C \ Γγ

m) we have ln f(z) =

ln f1(z) + . . .+ ln fm(z) and using the last relation for z = rei(φ+γ(r)), φ ̸= θj we obtain

F (z) = z
m∑
j=1

f ′
j(z)

fj(z)
= ∆υ(r) +

i

1 + ic

m∑
j=1

∆jĥj(θ)υ̃(r) + o(υ̃(r)) =

= ∆υ(r) +
i

1 + ic
hf (θ)υ̃(r) + o(υ̃(r)), r → +∞.

This completes the proof of Theorem 1.

Proof of Theorem 2. Let Ω=(an)
+∞
n=1 be a sequence of zeros of f ∈ H0 (υ,Γ

γ
m),

∂Dγ(r;α, β)= lγα(1, r) ∪ Cr(α, β) ∪
(
lγβ(1, r)

)−1 ∪ (C1(α, β))
−1

be the positive orientation of the curvilinear sector Dγ(r;α, β) with −π ≤ θ1 < . . . < θk0−1 <
α < θk0 < . . . < θl0 < β < . . . < θm < π, r /∈ Ω, Cτ (α, β) = {z = τeiφ, α ≤ φ ≤ β}. Then

2πinγ(r;α, β) =

∫
∂Dγ(r;α,β)

f ′(z)

f(z)
dz =

(∫
lγα(1,r)

+

∫
Cr(α,β)

−
∫
lγβ(1,r)

−
∫
C1(α,β)

)
f ′(z)

f(z)
dz =

= A1 + A2 + A3 + A4. (19)

By the conditions of Theorem 2 we obtain (υ̃(t) = tυ′(t))

A1 =

∫ r

1

f ′(tei(α+γ(t)))

f(tei(α+γ(t)))
(1 + itγ′(t)) ei(α+γ(t))dt = (1 + ic)

∫ r

1

F (tei(α+γ(t)))

t
dt+

+i

∫ r

1

F (tei(α+γ(t)))ψ̃υ(t)

t
dt = (1 + ic)∆

∫ r

1

υ(t)

t
dt+ i

∫ r

1

(G(α)υ′(t) + ε1(t)υ
′(t)) dt+

+i∆

∫ r

1

ε(t)υ′(t)dt− 1

1 + ic

∫ r

1

ε2(t)

t
(G(α)υ̃(t) + o(υ̃(t))) dt =

= (1 + ic)∆υ1(r) + iG(α)υ(r) + o(υ(r)), r → +∞ (20)

with
υ1(r) =

∫ r

1

υ(t)/tdt, εj(t) → 0

as t→ +∞, j = 1, 2. Similarly,

A3 = −(1 + ic)∆υ1(r)− iG(β)υ(r) + o(υ(r)), r → +∞. (21)
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Let
0 < δ < min

{
θk0 − α

2
,
β − θl0

2
,
θj+1 − θj

2

}
,

j = k0, l0 − 1. Then taking into account (3) we have

A2 = i

(∫ θk0−δ

α

+

l0−1∑
j=k0

∫ θj+1−δ

θj+δ

+

∫ β

θl0+δ

)
F
(
rei(φ+γ(r))

)
dφ+ i

l0∑
j=k0

∫ θj+δ

θj−δ

F
(
rei(φ+γ(r))

)
dφ =

= i∆υ(r)

(
(θk0 − δ − α) +

l0−1∑
j=k0

(θj+1 − θj − 2δ) + (β − θl0 − δ)

)
+ iΣδ + o(υ(r)) =

= i∆(β − α− 2δ(l0 − k0 + 1)) υ(r) + iΣδ + o(υ(r)), r → +∞ (22)

with

Σδ =

l0∑
j=k0

∫ θj+δ

θj−δ

F
(
rei(φ+γ(r))

)
dφ.

By Lemma 4 there exists an E0-set Ej such that∣∣∣∣∣
∫ θj+δ

θj−δ

F (rei(φ+γ(r)))dφ

∣∣∣∣∣ = O (υ(r))

(
δ + δ ln

(
1 +

1

δ

))
, r → +∞, r /∈ Ej,

and hence

|Σδ| ≤ O (υ(r))

(
δ + δ ln

(
1 +

1

δ

))
, r → +∞, r /∈ E =

l0∪
j=k0

Ej. (23)

Sending δ to zero from (19)–(23) we obtain

nγ(r;α, β)

υ(r)
=

1

2π
(G(α)−G(β) + ∆(β − α)) + o(1), r → +∞, r /∈ E. (24)

Let us show that the equality (24) is fulfilled for r ∈ [1,+∞). Indeed, let us suppose
that r ∈ E. From the definition of E0-set it follows that there exist numbers r′, r′′ such that
r
2
< r′ < r < r′′ < 2r, r′ /∈ E, r′′ /∈ E. Since

nγ(r′;α, β)

υ(r′)

υ(r′)

υ(r)
≤ nγ(r;α, β)

υ(r)
≤ nγ(r′′;α, β)

υ(r′′)

υ(r′′)

υ(r)
,

υ(r′) ∼ υ(r′′) ∼ υ(r), r → +∞, then from (24)

lim
r→+∞

nγ(r;α, β)

υ(r)
=

1

2π
(G(α)−G(β) + ∆(β − α)) = ∆γ(α, β).

This completes the proof of Theorem 2.

Remark 2. If the conditions of Theorem 2 are fulfilled with

G(θ) = hf (θ), ∆ =
m∑
j=1

∆j

then ∆γ(α, β) =
l0∑

j=k0

∆j, where α ∈ (θk0−1, θk0) , β ∈ (θl0 , θl0+1) .
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