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Archer–bow–arrow behaviour in the vertical plane

IHOR ZANEVSKYY

Lviv State Institute of Physical Culture, 11 Kostyushko Str., Lviv, 290000, Ukraine

Theoretical and experimental results of research on the problem of archer, bow and arrow behaviour in
the vertical plane are presented. The aim of the research is to develop a method of computer simulation of
static and dynamic interactions between the archer, bow and arrow system in order to provide archery with
practical recommendations. A model of an archer’s body is presented as a mechanical system composed of
a few solid bodies, which are connected to each other and to the ground with viscoelastic elements.
Mechanical and mathematical model of bow and arrow geometry in vertical plane in braced and drawn
situations is investigated. An asymmetrical scheme, rigid beams, concentrated elastic elements and elastic
string are the main features of the model. Numerical results of computer simulation of archer, bow and arrow
interactions are presented in graphical form, which makes the methods easy to use by sportsmen and
coaches.
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1. Introduction

During a rapid motion an arrow is in common motion space with a bow and an
archer. The main motion in the vertical plane is caused by the bow–grip–limbs–string
system. Simultaneously the arrow through the string nock point is involved by the
whole system in deflection out of the vertical plane. This rapid motion causes arrow
deflection in the lateral plane.

Rigorous three-dimensional analysis of the space system is very complicated and
with the other assumptions is not essential. The main part of potential energy, stored
in bow–limbs, is transformed to kinetic energy of the longitudinal motion of the arrow
and the string common motion. Some negligible part of energy is transformed and
deflects the motion of the arrow. Although the arrow is in a space motion of the whole
system, the problem can be idealised and reduced to two separate systems. The first
one is in the vertical plane, and the second is in the lateral plane.
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The first step in the understanding of an arrow behaviour in internal ballistics was
related to the explanation of the phenomenon that for almost two centuries has been
known as the archer’s paradox. The investigation of the archer’s paradox was carried out
by means of a high-speed spark photography which allowed us to secure direct evidence
of what an arrow does as it leaves the bow [3]. The archer’s paradox is the fact that an
arrow does not fly at a target along the line represented by its axis. The forces acting on
the arrow during its release do not coincide sufficiently with this axis. The string force is
exerted on the arrow in the bow plane. In a starting position, the arrow does not lie in this
plane, and its axis inclines towards it at an angle of a few degrees. Even in the case the
nock and head points of the arrow do lie in the bow plane, the longitudinal arrow axis of
the string force line does not coincide enough with the bow plane because the initial shape
of the arrow axis is not straight enough. So, the line of string force does not coincide with
the line of cross-section centres of the arrow. The released string pushes the arrow’s nock
point into the bow plane. Therefore the arrow moves forwards and slightly turns
decreasing the angle with this plane. The impulse normal to the axis of the arrow caused
by the release of the fingers from the string, as well as the column-like force of the string
push the arrow during its acceleration motion resulting in a significant bending of the
arrow shaft as it transits the bow. All these factors allow the arrow to undulate around the
bow handle and to follow
a straight course towards its target without striking the bow handle. Mechanical and
mathematical model of the lateral motion was investigated by P�KALSKI [6] and improved
by KOOI [4] and ZANEVSKYY [8], [9].

We started analytical modelling of the system behaviour in the vertical plane using
pseudo-static [2], [10] and dynamic approaches [11]. A dynamic analysis of the
traditional asymmetrical bow has been carried out in Japan [5], but such a bow is very
different from a modern sports bow and in its design human parameters have not been
taken into account. Hence, there are no analytical models, which make the studies of
the archer, bow and arrow interaction in the vertical plane possible and which
improve computational methods for adjusting the parameters of the system.
The aim of the research was to develop a method of mathematical modelling and
computer simulation of static and dynamic interactions in the archer–bow–arrow
system in order to provide archery with practical recommendations.

In the paper, the use was made of biomechanical methods (the model of human
body as a system of mechanical oscillators); theoretical mechanics and mathematics
(Lagrange’s equations of the second order; the principle of d’Alembert; the Cauchy
problem, method of iterations and the Runge–Kutta method); computational methods
(MathCAD and Mathematica packets); experimental methods (high-speed video
analysis; natural mechanical modelling).
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2. Archer’s body modelling

In theoretical modelling, a human body is presented as a mechanical system
composed of a few solid bodies, which are connected to each other with viscoelastic
elements [12]. A model structure is built taking into consideration the aim of a
research, body position and the character of its interaction with the surroundings.
Sport archers string a bow during the time of a common motion of a string and an
arrow with fixed hand trying to keep a steady position of a body. The motor program
of shooting is initiated before the clicker (a signal to release) can be heard [1].

Bow interacts with archer in the point of contact (H), i.e., the point at which
archer’s hand is in contact with bow handle (figure 1). Because of a short time of
string and arrow common motion (0.01–0.02 s) and relatively deep contact along the
inner side of the thumb muscle, the point of contact (H) can be assumed to be a pivot
point. Because of a small displacement of the bow handle, we can reduce the motion
to orthogonal directions, which are suitable to describe the motion of bow hand in the
vertical plane; they are as follows: the longitudinal Hξ-axis (along the upper
extremity) and the Hη-axis perpendicular to it.

Fig. 1. A model of the archer’s body: a – longitudinal direction, b – perpendicular direction

The next step to obtain a suitable model is a kinematical linkage of the group with
lower pairs (E-D-H). In the longitudinal direction, the number of the degrees of
freedom equals two, i.e., the displacement of the body relative to a ground (rotation
motion of the point D relative to the point E) and the displacement of the upper
extremity (contacting a bow handle) relative to the body (HD). In the perpendicular
direction, we deal with one degree of freedom, because elasticity of the shoulder
girdle (D) is significantly greater than its elasticity relative to the body in the vertical
direction (DE).
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Thus we can model an archer’s body in the longitudinal direction based on two
particles and two viscoelastic elements. The first particle with the mass ξ1m models
the archer’s body (except the upper extremity that is in contact with a bow handle)
and has a virtual coordinate sξ . The first viscoelastic element describes interaction in

the body–ground system and is represented by the coefficients of stiffness ξ1c and the

viscosity ξ1k . The second one, i.e., an upper extremity (of the mass ξ2m ), has a

virtual coordinate Hξ because of its common motion with a handle’s contact point H.

The corresponding viscoelastic element with the coefficients ξ2c and ξ2k describes
the interaction between the upper extremity and the remaining part of archer’s body.

The model of motion in the perpendicular direction includes one particle (of the
mass ηm ) with a virtual coordinate Hη and viscoelastic element with the coefficients

ηc  and ηk .
Taking account of the features given above, we can derive the expressions

representing the kinetic energy of the archer’s body model (see figure 1): 

2 2 2
archer 1 2

1
( )

2 s H HT m m m� � �� � � ;

potential energy:
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dissipation function:

])([
2
1 22

2
2

1archer HHss kkk ηξξξΦ ηξξ ′+′−′+′= .

Prime symbol expresses a derivation with time, i.e., ./)( dtd≡′

3. Bow and arrow modelling

The basic assumption in the modelling of a handle, limbs and an arrow is their
motion as rigid bodies in a general (vertical) plane. A handle, a stabiliser and a sign
could be modelled as a one rigid body whose kinetic energy (figure 2) is expressed as
follows:
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h

m

hh mdT
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handle ηξ , (2)

where κηηκξξ yxxy HhHh −+=++= ; ; κ is an angular displacement relative to
the point H; Hxy is a rectangular system of coordinate fixed to the handle. Inserting
the two last expressions into (2) we obtain:

)](2)([
2
1 222

handle CHHCHHHHHHH yxmImT ηξκκηξ ′−′′+′+′+′= , (3)

where Hm is mass; CHCH yx , are the coordinates of a centre of gravity; IH is the
moment of inertia relative to the point H.

Fig. 2. Dynamic schematic models of a bow (a) and an arrow (b)
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Kinetic energy of limbs is represented by:
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where LUl / is the length of a limb; µ is the distributed mass; z is the co-ordinate
fixed to a limb. The upper and lower limbs are marked with the corresponding
subscripts U and L. Inserting the expressions for displacements
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where LUm / is the mass of limbs; LUI / is the moment of inertia of limbs relative to

ends of the handle (the points HU/L); LUr / is the distance from the end of the handle to
the limb’s centre of mass.

The equation for potential energy of limbs may be expressed as follows (see figure
2a):

2
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LULULULU cP ϕθ += , (5)

where cU and cL stand for the stiffness of limbs.
Expression for the kinetic energy of a string is divided into three parts representing
three parts of string mass pinned to the nock points of the limbs and the arrow:
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where ms is the mass of a string; *
/ LUs is the length of the string branches in unstrung

bow ***
LU sss += .
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The expression for the potential energy of string branches is:
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where f is the distributed stiffness of the string; LUs / stands for the length of the string
branches in strung bow.

The expression for the kinetic energy of the arrow (see figure 2b) is given by:
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where la is the length of the arrow; aµ is the distributed mass; za is the coordinate
fixed to its longitudinal axis; mP is the mass of the arrow’s head.

The interaction between bow and arrow is described according the actual model
only through the contact at the nock point. An initial position of the arrow relative to
the bow in its main (vertical) plane is determined by the remains that holds an arrow’s
head. The remains are fixed to the handle and have the ability to turn and disappear
just at the moment an arrow starts to move. Due to a small size and mass, the remains
do not accumulate energy, therefore their interaction with an arrow is not taken into
account within the framework of the model.

The results of a high-speed video analysis show that an arrow motion in the
vertical plane can be assumed to be a rigid shift [7], 12]. Inserting Aa ξξ = and

ψηη aAa z+=  into the energy equation (8) we obtain:

222
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2
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where ma is the mass of the arrow and rA stands for the distance from the tail to the
arrow’s centre of mass.

The expression for the potential energy of the arrow is calculated as a work of
inertial forces (according the principle of d’Alembert) on the virtual longitudinal
displacements ( 1<<ψ ):
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where 0ψ  is an initial attitude angle of the arrow.
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4. Dynamic behaviour

After some mathematical transformations in (1), (3)–(7), (9), (10), we get the
expressions for the whole kinetic and potential energy of the archer–bow–arrow
system during their common motion between string release and arrow shooting:
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where )cos(1 κθ += Ub ; )sin(2 κθ += Ub ; )cos(3 κθ −= Lb ; )sin(4 κθ −= Lb ;

asA mmm +=
3
1

. Other two parts of the string mass have been taken into account with

mass-inertial characteristics of limbs as pinned to the nock points.
Solving the dynamic problem, we do not consider gravity forces acting on the

bow. But we take into consideration arrow weight because its force moment acting on
the arrow has the same value as the moment of inertial forces.

Inserting expressions (1) and (11) into the Lagrange equations of the second order
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we get a system of differential equations of the second order relative to generated co-
ordinates ψηξθθκηξξ ,,,,,,,, AALUHHsiq ≡ :
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The initial conditions of the problem are as follows:
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where the constants 00000 ,,,, HHLUA ηξθθη are the solutions of the static problem
(see the next section). Zero values of derivations correspond to the manner of archery
technique (a breathing is stopped and a position is motionless).

According to the results of surface electromyography, the motor program of
shooting is initiated before the signal to release can be heard. Thus it can be classified
as an open loop. The anticipated balance release is characterized by an increasing
activity of the m. pectoralis major only [1]. This muscle is activated to the balance
changes of static equilibrium in the lateral plane. No muscles show significant
changes of activity. Therefore, no generated forces should be present in the Lagrange
equations (12), which describe the behaviour of the system in the vertical plane Fi = 0.
The direction of arrow motion (the vector of the centre of mass) is described by the
expressions:

A

AA r
ξ

ψηζ
′−

′+′
=tan ;   ζψα −= , (14)

where ζ is the angle of projection, and α is the angle of attack. An arrow leaves
a string just after its acceleration becomes equal to zero ).0( =′′Aξ

The system of equations (12) with initial conditions (13) presents the Cauchy
problem for non-linear ordinary differential equations of the second order. It is
impossible to obtain analytical solutions for the problem, therefore we used the
Runge–
Kutta method applied in the program ‘NDSolve’ (Method Explicit Runge–Kutta) from
the package of Mathematica 4.1 (www.wolfram.com).

This mathematical model describes dynamics of the bow and arrow system in the
vertical plane (or, to be precise, bow and arrow common motion in the main plane of
the bow). Indeed, the system performs 3D motion, but its displacement in the lateral
plane is hundred times smaller than displacement in the main plane. The influence of
the lateral motion on the main motion is negligibly small because of a significantly
different value of displacement and the corresponding energy [7].

5. Static behaviour

Let us consider the character of the interaction between an archer and a bow at the
instant of string release. In a modern technique of the sport of archery, you are not
required to hold, but to grasp a bow handle. The centre of the mass of bow is located at
the point of the interaction between the handle and the archer’s hand. The mass of riser,
stabilizers, sight and other rigid joints consists the main quarter of the whole bow mass.
The mass of an arrow, a string, and movable elements of limbs consists about 3% of the
whole mass of the system (www.huytusa.com). The corresponding gravity forces are
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negligibly small compared to the drawing force. So, the gravity forces have no influence
on the bow shape and are compensated for the force of archer’s hand. Therefore, in static
problem, we can assume only two external forces, which act on the handle and on the
string, i.e., the forces at the points � (the pivot point) and � (nock point), respectively
(figure 3).

Fig. 3. Scheme of static model: 1 – braced bow, 2 – strung bow

The corresponding mathematical model of the bow in a given situation is
represented by
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where FU and FL are the forces in string branches; ηξ FF and are the projections of the

drawing force onto the axes of coordinates; Aξ is a drawing distance determined by
the length of an arrow.

The initial conditions for the pivot point displacements during the bow hand and
the handle interaction are given by:

η

η

ξ

ξ ηξ
c

F

c

F
HH == 0

2
0 ; . (16)

Mathematical model of the braced bow is represented by the following equations:

;cos2coscos BBLULBLUBU shhll γθθ =+++

;sin2sinsin BBLBLUBU sll γθθ =−

);()(sin UUBUBUBUB clF ϕθγθ +=− (17)
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*

s
ss

fF B
B

−=

where sB is the string length and FB is the force of the string stretching (see figure 3).
The parameters of a bow with a braced string are marked with the subscript B.

The systems of equations (15) and (16) include transcendent and non-linear
functions that cannot be solved analytically. Therefore to study of the static problem,
we made use of a numerical method of iteration using the computer program ‘Find’
from the package of Mathcad 2000i Professional (www.mathcad.com).

6. Experimental modelling

Two kinds of limb models are popular in mechanical analysis of the modern sport
bow, i.e., an elastic strip [4] and a rigid beam joined to a riser by an elastic element
[3]. Both of the models have some advantages and limitations. As for the analysis of
tensions and deformations of the limb and the influence of its shape on the bow
efficiency, the first model is better. If we study the statics and dynamics of the bow as
a whole system, the second model is more effective because of its simplicity and
reasonable precision. Common parameters of the model (virtual length of a limb,
centre of mass, moment of inertia and virtual stiffness) have been proposed by
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HICKMAN [3]. The model was applied to a classic English bow. In order to use the
model for a modern sports bow with recurved limb, we have to modify it.

Fig. 4. Scheme for the transformation of the recurved limb to the Hickman model of the limb (a):
0 is a free situation (without a string), 1 – braced bow, 2 – strung bow;

diagram of bow force vs. draw length (b)

We propose experimental and analytical method to determine the parameters of
original model. Symmetrical shape of the bow in its main plane is studied in two
positions (figure 4): the bow is braced with string (B), and the bow is conventionally
strung (�). The break lines show a virtual part of a string and a limb, which transform
the recurved bow scheme to the Hickman scheme. The string is in contact with the
recurved part of the limb in the braced position between the points B′ and T′. We
assume the length of the curve (B′T′) to be equal to the length of the straight line (B′TB).

The origin O of the Cartesian coordinate system is pinned to the handle in the
middle of the bow. ξO is the axis of symmetry, axis ηO is based on the riser. Using
simple algebraic equations (figure 4a)

222222 )(;)( ll
BBAA THTTHT =+−=+− ξηηξηη

we arrive at two basic geometrical parameters of the model:
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where l is a virtual length of the limb; AOT OTl
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Using force, energetic and geometrical alignments (see figure 4�, b):
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we obtain the force parameters of the model:
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where E, FA are respectively the potential energy of the limbs and the force of a strung
bow; � is a stiffness of the virtual elastic element instead of a distributed stiffness of
a limb; ;; BBAA HTHT ηθηθ ∠=∠=  ϕ  is the angle of a virtual limb at free situation

(i.e., without a string); 
ATAF

E
k

η
= . The role of another marks is explained in the scheme.

The recent types of sports bows are designed with nominal equal upper and lower
limbs. Some previous types were designed with limbs of different shape and stiffness
(www.yamaha.co.jp). The method mentioned above is suitable for determination of
virtual parameters separately for the upper and lower limbs, too (see previous sections).

7. Practical application

Let us consider the modern sports bow and arrow made according to FITA
(International Archery Federation) Standard (www.archery.org) labelled as:
WIN&WIN Recurve Bow. The bow consists of Winact Riser (25”) and Long Limbs
(70”), i.e., the bow handle length h* is 635 mm (see figure 3) and the whole length of
the bow (measured between tips of the limbs) reaches 1778 mm. The standard
measure of bow asymmetry in the vertical plane named ‘tiller’ is =∆ 6 mm and the
bow force is F =
178 N. The arrow No. 2414 - 30” with 15% mass point was used.

Rated parameters of the bow are as follows (see the previous sections): lU = lL =
531 mm; mU = 106 g; mL = 107 g; IU = 68.1 kgcm2; IL = 68.3 kgcm2; rU = 227 mm;
rL = 228 mm; cU = cL = 69.1 Nm; =Uϕ 0.6047; =Lϕ 0.6076; hU = hL = 342 cm; mH =
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2.13 kg; IH = 2128 kgcm2; xCH = –21 mm; yCH = –34 mm; =*
Us 780 mm; =*

Ls 840 mm;

f = 255 N/cm; ms = 7 g; =0Aξ 0.7576.
We obtain the bow parameters in its braced position solving the system of

equations (17): =UBθ 0.4666; =LBθ 0.4342; sB = 820 mm; =Bγ 0.00945; FB = 316
N.

The arrow parameters are: la = 783 mm; ma = 22.4 g; IA = 73.6 kgcm2; rA = 510 mm.

Fig. 5. Parameters of bow and archer interaction:
a – virtual displacement of the archer’s body; b – recoil force acting on the body;

c – recoil force acting on the bow hand

The male archer’s parameters are: =ξ1m  26 kg; =ξ2m  3.8 kg; =ηm  2.1 kg; =ξ1c

11.6 N/mm; =ξ2c  19.0 N/mm; =ηc  9.43 N/mm; =ξ1k  237 kg/s; =ξ2k  78 kg/s; =ηk

45 kg/s.
Solving the static problem (15), we arrive at the parameters under initial

conditions (13) and (16):
=0Aη 42.6 mm; =0Uθ 0.7655; =0Lθ 0.7942; =0Hξ 9.4 mm; =0Hη 1.1 mm.

The other solutions are as follows: sU = 786 mm; sL = 846 mm; =Uγ 0.5189; =Lγ
0.4641; FU =  186 N; FL = 192 N; =ξF  178 N; =ηF  10 N.
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The dynamics of archer, bow and arrow during their common motion, as an initial
rest height =0Pη  37 mm, is presented in figures 5, 6, 7.

Fig. 6. Parameters of bow and arrow interaction:
a – longitudinal speed of an arrow; b – longitudinal displacement of an arrow;

c – perpendicular displacement of string and arrow nock point; d – longitudinal displacement
of the pivot point (hand and handle); e – angular displacement of a handle

The time of bow and arrow common motion (from string release up to arrow
shooting), i.e., about 0.0154 s, was calculated considering the instant of the maximum
longitudinal speed (VA = 62 m/s) to correspond directly to zero value of acceleration (

0=′′Aξ , see figure 6 a).
A recoil force acting between a bow hand and a handle after string release varies

in the range close to 3% of its initial (static) value (see figure 5c). A force, almost 20
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times smaller (see figure 5b), is transferred to the ground via an archer’s body, while
its displacement remains near 1 mm (see figure 5a).

Because of the different character of static and dynamic balances of forces, an
arrow presses on a string a few millimetres deeper ( =Aξ 223 mm, see figure 6b)
compared to its braced position ( =Aξ 231 mm). Displacement of the pivot point, i.e.,
the point at which a bow hand and a handle are in contact, is about one millimetre and
approximately is equal in the longitudinal (9.4 << Hξ 10.2 mm) and perpendicular
directions (see figure 6d).

Fig. 7. Parameters of arrow internal ballistics: a – angle of attack of an arrow; b – attitude angle;
c – angular speed of the arrow in the main plane

String and arrow common motion (internal ballistics) is accompanied by intensive
oscillations, which are caused by the destruction of the static balance of forces at the
instant of string release. There are seven full cycles of oscillations during the motion.
The results of computer simulation make it possible to determine the bow and arrow
adjusted parameters, which minimize the angle of attack and angular speed of an
arrow that is better for a good shot (see figure 6).
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8. Conclusions

1. The results of the modelling of the archer–bow–arrow system correlate with
well-known results of high-speed video analysis: the process of common motion has
a significant non-linear character.

2. A recoil force acting between a bow hand and a handle after string release
varies in the range close to 3% of its initial (static) value. A force, almost 20 times
smaller, is transferred to the ground via an archer’s body, while its displacement
remains near 1 mm.

3. Because of the different character of static and dynamic balances of forces, an
arrow presses on a string a few millimetres deeper compared to its braced position.
4. String and arrow common motion (internal ballistics) is accompanied by intensive
oscillations, which are caused by the destruction of the static balance of forces at the
instant of string release. There are full seven cycles of oscillations during the motion.
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