2 17 145,55V

ГОСУДАРСТВЕННЫЙ ЦЕНТРАЛЬНЫЙ ОРДЕНА ЛЕНИНА ИНСТИТУТ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

На правах рукописи

САМБОРСКИЙ Анатолий Генналиевич

ПОВЫШЕНИЕ РАБОТОСПОСОБНОСТИ БЕТУНОВ НА КОРОТКИЕ ДИСТАНЦИИ В УСЛОВИЯХ ПРИМЕНЕНИЯ НЕКОТОРЫХ ЭРГОГЕНИЧЕСКИХ СРЕДСТВ

13.00.04 - Теория и методика физического воспитания,
 спортивной тренировки и оздоровительной
 физической культури
 03.00.13 - Физиология человека и животных

ABTOPEФEPAT

диссертации на соискание ученой степени кандидата педагогических наук

MOCKBE

Работа выполнена в Государственном Центральном ордена Ленина институте физической культуры

Научние руководители:

доктор биологических наук,

профессор ВОЛКОВ Н.И.,

доктор биологических наук, профессор БАЛЬСЕВИЧ В.К.

Официальные оппоненты:

доктор педагогических наук,

профессор ГОДИК М.А.,

доктор биологических наук,

профессор ФУДИН Н.А.

Водущая органивация -

Центральный научно-исследовательский

институт спорта

Защита диссертации состоится " 15 " 12 1992 г.
в 13 часов на заседании специализированного Совета К. 046 010
Гесударственного Центрального ордена Ленина института физичес-
кой культуры по адресу: Москва, Сиреневый бульвар, 4.
С писсертацией можно ознакомиться в библиотеке института.

Автореферат разослан "<u>16</u>" // 1992 г

Учений секретарь специализированного Совета, кандидат педагогических изм

TE WMAKOB D.H.

3454

ЧИТАЛЬНА ЗАЛА

Общая характеристика работы

Актуальность. Спортивная тренировка с биологической точки зрения является процессом направленной адаптации организма, где применение избранных средств и методов должно обеспечить необходимое воздействие на лимитирующие ("ведущие") факторы спортивной работоспособности (Н.И.Волков, 1974, 1986; Ц.Желязков, 1981; А.А. Виру, 1988). Эффективное решение этой проблеми прежде всего нуждается в точной информации об уровне развития и взаимосвязях "ведущих" факторов, определяющих спортивный результат (Н.И.Волков, В.М.Зациорский, 1964; М.А.Годик, 1966; В.М.Зациорский, 1971; Н.И. Волков, 1975; Э.Р.Андрис, 1990).

В беге на короткие дистанции в роли основного фактора, приводящего к снижению работоспособности, к падению максимальной мощности упражнения, выступает фактор локального менечного утомления, обусловленного уменьшением внутримышечных резервов энергетических веществ, главным образом креатинфосфата, а также закислением внутримышечной среды вследствие анаэробного образования молочной кислоты (К.B. Donaldson, 1982; K. Sahun, 1982; Н.И. Волков. В.И.Олейников, 1985). Известно (E.A.Newsholme, 1973; K.Sahlin, R.C. Hazris, E. Hultman, 1975; D.E. Atkinson, 1977; B. Chance, A. Sapega, D. Sokolow, S. Eleff, J. Leigh, T. Graham, J. Armstrong, 1982), что ключение ферменты внутримышечного энергетического обмена - миозиновая АТФ-аза и креатинфосфокиназа, обеспечивающие поддержание высокой выходной мощности при кратковременных максимальных усилиях, - необычайно чувствительны к изменению рі внутриклеточной среды. Іри значительном закислении они снижают свою активность, что вызывает падение мощности выполняемых упражнений, ухудшение спортивных результатов (K.B. Donaldson, 1982; A. Katz, A. Bornett, D.L. Costill, W.J. Fink, R.L. Sharp, 1982; K. Sahlin, 1982).

С этой точки зрения, применение специальных средств, которые могут увеличить внутримышечную общеорганизменную буферную емкость и способность к поддержанию высокой активности ферментов энергетического обмена, должно положительно сказаться на спринтерской работоспособности (Н.И.Волков, В.И.Олейников, 1985; Н.И.Волков, С.Л.Хоронюк, 1985; Н.И.Волков, С.К.Сарсания, Ю.М.Савельев, Э.Р. Андрис, Н.Д.Алтухов, 1986). Интересные перспективы в этом направлении открываются в связи с разработкой и внедрением в спортивную практику препаратов полилактата (Т.D.Fahey, D.Larsen, G.A. Втоокз, 1990).

<u>Пель исследования</u>. Цель настоящего исследования заключалась в том, чтобы установить основные биоэнергетические факторы, лимитирующие уровень достижений в спринте, выявить наиболее информативные эргометрические показатели специальной работоспособности бегунов на короткие дистанции, установить эффективность применения препаратов полилактата в повышении уровня специальной работоспособности спринтеров.

Рабочая гипотеза. Высказано предположение о том, что применение препаратов полилактата может потенцировать тренировочный эффект применяемых в занятии упражнений и стимулировать работоспособность спортсменов. Эффективность применяемых специальных тренировочных средств может быть повышена за счет приема препаратов полилактата, применяемых в составе различного рода спортивных напитков и питатальных смесей.

Научная новизна. Научная новизна настоящего исследования заключается в том, что впервые изучено действие препаратов полилактата, как средства потенцирующего тренировочный эффект нагрузки и стабилизирующего состояние кислотно-щелочного равновесия в срганизме спортсменов. Практическая значимость. Определены высокая эффективность и удобство применения препаратов полилактата в целях коррекции состояния кислотно-щелочного равновесия и улучшение показателей специальной работоспособности у бегунов на короткие дистанции. Внесены важьые уточнения в перечень наиболее информативных показателей, оценивающих специальную работоспособность в спринтерском беге и разработаны практические рекомендации по проведению эргометрического анализа и расчета основных параметров кривой скорости бега. Внесение этих уточнений повышает точность и надежность применяемых процедур педагогического контроля в процессе подготовки высококвалифицированных спринтеров.

На защиту выносятся следующие положения:

- І. Среди биоэнергетических факторов, лимитирующих уровень достижений в беге на короткие дистанции, наиболее важное значение имеют факторы алактатной анаэробной мощности и емкости, связанные с умением развивать и поддерживать максимальные усилия в течение определенного промежутка времени. Наряду с суммарными запасами анаэробных энергетических веществ в мышцах (АТФ и креатинфосфата), эти факторы также во многом зависят от сохранения постоянства кислочно-щелочного равновесия в организме.
- 2. Наиболее объективная информация о состоянии специальной работоспособности в спринтерском беге может быть получена на основе эргометрического анализа кривой скорости бега и прямых измерений показателей анаэробных способностей спортсменов, в частности показателей динамики кислотно-щелочного равновесия при повторном выполнении упражнений максимальной мощности.
- 3. С целью коррекции состояния спортивной работоспособности в спринтерском беге может быть использовано применение препаратов полилактата. Под влиянием приема препаратов полилактата наиболее

выраженное улучшение обнаруживают показатели анаэробной алактатной мощности и емкости. Применение такого рода препаратов возможно также в целях улучшения кумулятивного эффекта тренировки на протяжении длительного периода времени.

Объем и структура диссертационной работы

Диссертация состоит из введения, пяти глав, выводов и практических рекомендаций. Она изложена на 98 страницах машинописного текста, иллюстрирована 8 таблицами и 21 рисунком. Список литературы включает 139 источников, из которых 44 зарубежных.

Задачи, методы и организация исследования

В работе были поставлены следующие задачи:

- Установить основные биоэнергетические факторы, лимитирующие уровень достижений в беге на короткие дистанции.
- 2. Выявить наиболее информативные эргометрические показатели специальной работоснособности бегунов на короткие дистанции.
- 3. Установить эффективность применения препаратов полилактата в целях улучшения "ведущих" биоэнергетических факторов и повышения уровня спортивных достижений в спринтерском беге.

Экспериментальные исследования выполнялись на кафедре биохимии и в легкоатлетическом манеже ПЦОЛИФК. В эксперименте в качестве испытуемых приняли участие 18 спринтеров высокой квалификации (КМС и МС).

Во время эксперимента спортсмены тренировались по утвержденным тренировочным планам под наблюдением тренеров.

Программа лабораторных обследований вилючала проведение велоэргометрических испытаний в комбинированном тесте "ступенчатого повышения нагрузки" для оценки максимума аэробной и анаэробной работоспособности, и в тесте "МАМ" для оценки максимальной анаэробной мощности. При проведении теста "ступенчатого повышения нагрузки", нагрузка увеличивалась через каждые 2 мин на 75 Вт. Каждую минуту испытуемому сообщалось время работы. Испытание прекращалось в тот момент, когда спортсмен оказывался неспособным поддерживать заданную скорость (мощность) педалирования.

При проведении теста "МАМ" испытуемые выполняли серию упражнений с установкой на достижение максимальной частоты педалирования при продолжительности усилий в 10 с с постоянной величиной сопротивления. Отдых между повторениями был равен I мин. Упражнение выполнялось до выраженного снижения частоты педалирования.

Оба теста выполнялись на велоэргометре "Монарк" (Швеция). Для изучения динамики скорости в спринтерском беге испытуемым было предложено повторное вробегание дистанции IOO м с низкого старта в полную силу через I мин отдыха до выраженного снижения скорости бега.

Газометрические измерения осуществлялись с помощью мониторной системы ММС фирмы "Беккман" (Австрия).

Время пробегания фиксировалось с помощью фотоэлектронного кронометрирования с точностью до 0,01 с и засекалось по началу движения спортсмена. Беговое контрольное испытание спортсмены выполняли по очереди, в каждом забеге бежал один участник.

При определении кислотно-щелочного равновесия в каждом тесте производили забор проб крови в покое перед началом работи, после 5-го, 10-го, 15-го повторения и после прекращения теста на 3-ей минуте. Для регистрации скорости бега был использован спидографический метод. Запись спидограмм производилась нами с помощью спидографа, сконструированного по прынципу В.М.Абалакова. Пример записи скорости бега приведен на рис. I.

Рис. І Спицограмма спринтерского бега

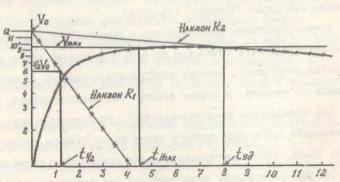


Рис. 2 Расчетный график кривой скорости бега На ординате — скорость, м/с. На абсилссе — время, с.

При расчете основных параметров кривой скорости бега применяли графозналитический метод, где в качестве математической модели изучаемого явления было использовано бизкспоненциальное уравнение (Ф.М.Генри, 1954). Для этого с полученной спидограммы для отдельных отметок времени считывались соответствующие значения скорости, которые откладивались в полулогарифмическом графике (рис. 2).

Статистическая обработка данных осуществлялась общепринятыми методами (В.М.Зациорский, 1966; Дж.Гласс, Дж.Стенли, 1976).

Всем испытуемым разъяснялись условия выполнения контрольных заданий и их порядок, обращалось внимание на серьезность подхода к тестированию и необходимость концентрации усилий в достижении максимальных результатов.

Условия тестирования были идентичны. Тестированию предшествовала стандартная разминка.

Препараты полилактата использовались в форме напитка, приготовленного на основе фруктового сока с добавлением сластилина и
лимонной кислоты из расчета 200 мг на I кг веса тела. Напиток, содержащий препараты полилактата в указанной дозировке, готовился
"ex tempore" и принимался в объеме 300 мл за 60 мин до начала испытаний. В целях исключения влияния других факторов на работоспособность спринтеров, в контроле принимался напиток фанты, также в
объеме 300 мл за 60 мин до начала тестирования.

Результати исследования

Показатели максимальной аэробной и анаэробной работоспособности бегунов на короткие дистанции в дабораторном тесте "ступенчатого повышения нагрузки"

Общая свошка данных максимума аэробных и анаэробных способностей у спортсменов экслериментальной группы представлена в

табл. І. Приведенные в таблице средние значения исследуемых показателей говорят об относительно невысоком уровне развития аэробных и анаэробных способностей у обследованных нами спортсменов.
Полученные количественные значения показателей имеют очень высокую межиндивидуальную вариативность и несколько ниже тех значений, которые получены в исследованиях других авторов на сходных
контингентах испытуемых.

Показатели алактатной работоспособности бегунов на короткие дистанции в тесте повторного "MAM"

Общая сводка показателей максимальной анаэробной мощности у спортсменов экспериментальной группы представлена в табл. 2. Приведенные в таблице данные демонстрируют довольно высокий уровень развития алактатной работоспособности у спринтеров, принявших участие в эксперименте.

Показатели максимальной анаэробной можности в тесте "MAM", выводимые на основании кривой скорости бега

Данные об основных характеристиках кривой скорости бега у спринтеров приведены в табл. 3. В ней представлены данные лучшей попытки спортсменов. Приведенные в таблице средние значения по-казателей говорят о высоком уровне специальной работоспособности бегунов на короткие дистанции.

Как видно из приведенных данных, обследованная нами группа спринтеров имеет более высокие значения максимальной скорости бега, более позднее время достижения максимальной скорости и более длительное время удержания ее, чем спринтеры, обследованные другими авторами. В других показателях различия не существенны.

Таблица І

Показатели максимума аэробных и анаэробных способностей у спортсменов экспериментальной группы

Nek III	Показатели	n	x	a2	Sx	V %	R max-min
I	∑Wne, BT	18	80718.75	19032.60	4488.82	23.58	60750
2	WKP, BT	18	267.88	48.26	II. 3 8	18.02	I45
3	Wne, Br	18	300	40.09	9.46	13.36	150
	м Ио	18	3.35	0.50	0.012	I4.93	22.5
4	Max VO2, mi/kr/mhh	18	44.26	7.16	I.69	16.18	I.74
5	Мах VE, л/мин	18	116.75	28.59	6.74	24.49	87
6	ExcCO2, MA/KI/MUH	18	20.58	6.14	I.45	29.83	I8.4
7	МахрН, м Экв/л	18	7.243	0.063	0.015	0.87	0.207
8	∆ рН, мЭкв/л	18	0.155	0.057	0.013	36.77	0.160
9	МахВЕ, тЭкв/л	18	-13.2	3.5	0.83	26.52	II.2
	THE REPORT OF			Control of	Red E		

Таблица 2

Показатели максимальной алактатной мощности у спортсменов экспериментальной группы

MAK III	Показатели	n	X	SD	SR	V %	R max-min
I	Wmax, Br	18	841.71	66.25	15.63	7.87	186
2	N _{тосх} , количество повторений	18	6.14	I.28	0.30	20.85	12
3	tnp, c	18	95.71	33.05	7.80	34.53	90
4	∑W np, Br	18	7092.86	2310.09	544.83	32.57	6792
5	мах рН, тЭкв/л	18	7.214	0,020	0.005	0.28	0.054
6	∆ рН, мЭкв/л	18	0.198	0.023	0.005	II.62	0.064
7	Мах ВЕ, мЭкв/л	18	-17.89	- I.92	0.45	10.73	6.2

Таблица 3

Показатели специальной работоспособности спринтеров, зафиксированные в беге на IOO м (лучшая попытка)

MAK IIII	Показатели	n	X	SD	SX	V %	R max-min
I	Vmax, M/c	18	10.21	0.29	0.07	2.84	0.72
2	Vo , m/c	18	12.42	0.44	0.10	3.54	I.32
3	tmax, c	18	6.5	0.58	0.14	8.92	1.5
4	tum, с	18	9.79	0.86	0.20	8.78	2.5
5	K_{I} , c^{-I}	18	0.580	0.051	0.012	8.79	0.148
6	K_2 , c^{-I}	18	0.026	0.005	0.001	19.23	0.012
7	T ₁₀₀ , c	18	II.7I	0.27	0.06	2.31	0.7
8	Мах рН, мЭкв/л	18	7.046	0.071	0.017	1.01	0.195
9	Мах ВЕ, мЭкв/л	18	-24.66	-3.13	0.74	12.69	9

Интеркорреляции показателей специальной работоспособности бегунов на короткие дистанции

В табл. 4 представлены данные о взаимосвязях максимума аэробных и анаэробных способностей с алактатными способностями и основными параметрами кривой скорости бега. Как видно, максимум кислородного потребления — показатель аэробных способностей, обнаруживает значимую корреляцию с такими аэробными показателями как максимальный уровень легочной вентиляции и критическая мощность, а также высокую корреляцию с анаэробным показателем Δ рН^{СТ}. Показатель критическая мощность проявляет значимую интеркорреляцию с показателем Δ рН^{СТ}.

Показатель уровня максимальной легочной вентиляции демонстрирует высокую связь с величиной ExcCO_2 и существенную связь с $\mathrm{ApH}^{\mathrm{CT}}$.

Изучал взаимосвязь основных параметров кривой скорости бега у бегунов на короткие дистанции, нами установлено, что результат в беге на дистанции IOO м обнаруживает високую отрицательную интеркорреляцию со значением максимальной скорости бега, а также с показателем константы скорости стартового ускорения и положительную с показателем константы скорости развития утомления. Значимая отрицательная взаимосвязь выявлена между показателями константы скорости стартового ускорения и константы скорости снижения работоспособности.

Анализ интеркорреляций позволил выясетть, что результат в беге на IOO м отрицательно коррелирует с такими биоэнергетическими
показателями как максимальное потребление кислорода, количество
повторений максимальной мощности, время прекращения работи, суммарная мощность работи и Δ рН^{МЗМ}. Из этого следует, что в методику тренировки необходимо включать задачу постоянно совершенст-

Таблица 4

Матрица интеркорреляций максимума аэробной и анаэробной работоспособности с показателлями алактатной работоспособности и основными параметрами кривой скорости бега

примечание: в приводимых значениях козффициентов коррелиции опущено ноль целых.

20

PK > 0,468

вовать энергетические функции организма, от которых зависят результаты в спринте. Это относится к показателям мощности алактатного анаэробного процесса, способности бороться с утомлением, претерпевая значительное снижение кислотно-щелочного равновесия, буферной емкости крови и накопление молочной кислоты.

Следует отметить, что хотя анаэробные возможности спортсменов составляют основу специальной спринтерскей работоспособности, повышение уровня аэробных возможностей у спринтеров высокой квалификации является также необходимым. Для того, чтобы обеспечить выполнение необходимого объема скоростной работы и быстрое восстановление после нее, нужно создать высокий уровень аэробной работоспособности.

Педагогический эксперимент

Влияние приема препаратов полилактата на показатели работоспособности бегунов на короткие дистанции.

Результати проведенных испитаний спортсменов в тесте с повторным выполнением упражнений максимальной анаэробной мощности в контрольных условиях и с приемом препаратов полилактата приведены в табл. 5. Следует отметить, что "острый" эффект воздействия препаратов полилактата проявляется в разной степени на изменение отдельных из указанных выше показателей работоспособности. Среднее значение показателя максимальной мощности, достоверно улучшилось под влиянием приема препаратов полилактата (уровень значимости 99%). Выявлены достоверные различия между средними значениями кислотно-щелочного равновесия, в частности рН (уровень значимости 99,9%). В то же время, средние значения других показателей, достоверно не различаются (уровень значимости менее 95%). Исходя из этого факта, можно сделать вывод, что применение препаратов полилактата оказывает положительное влияние на работоспособность спринтеров.

Основываясь на вышеизложенных данных, можно утверждать, что прием препаратов полилактата в условиях напряженной мышечной деятельности повышает максимальную мощность усилий и увеличивает буферные резервы организма. В наиболее заметной степени эти эффекты и проявились при повторном выполнении упражнений максимальной мощности, где не обнаруживается значительного усиления гликолиза и отсутствует заметное закисление внутренней среды организма.

В табл. 6 приведены средние значения параметров кривой скорости бега и показателей кислотно-щелочного равновесия крови, зафиксированные при повторном беге на 100 м в контрольных условиях и под влиянием приема препаратов полилактата.

Как видно, среднее значение показателя максимальной скорости бега достоверно улучшилось под влиянием приема препаратов полилактата (уровень значимости 99%). Обнаружено достоверное улучшение среднего значения такого показателя, как время достижения максимальной скорости бега (уровень значимости 99,9%), что нельзя сказать о таком показателе как время удержания максимальной скорости бега, где выявлена недостоверность различий (уровень значимости менее 95%). Но, как видно из приведенных средних значений этих показателей, нетрудно заметить, что несколько ранний момент достижения максимальной скорости бега говорит о более продолжительном общем времени удержания ее в условиях приема препаратов полилактата. Исходя из этого, можно утверждать, что применение препаратов полилактата оказывает положительный эффект на общее время удержания максимальной скорости.

3754

Таблица 5

Показатели алактатной работоспособности у спортсменов при повторном выполнении упражнений максимальной мощности в условиях контроля и приема препаратов полилактата

leté	Показатели	Конт	роль	Полила	ктат	P	
ш		x	SD	x	SD		
I	Wmax, BT	841.71	66.25	885	62.69	<0.01	
2	Nmax, повторений	6.14	38 5	4.25	0.96	>0.05	
3	fup, c	95.71	33.09	72.5	20.62	>0.05	
4	Σ Wпр, Вт	7092.86	2310.09	5637.75	1559.66	> 0.05	
5	Мах рН, мЭкв/л	7.214	0.020	7.178	0.017	<0.001	
6	ДрН, мЭкв/л	0.198	0.023	0.211	0.017	<0.001	
7	Мах ВЕ, mЭкв/л	-17.89	1.92	-I7.48	ı.II	>0.05	

Таблица 6

Влияние приема препаратов полилактата на показатели работоспособности спортсменов в повторном беге с максимальной скоростью на дистанции IOO м

JêJê IIII	Показатели	Контроль		Полилактат		-
		$\bar{\mathbf{x}}$	۵۵	x	\$D .	P
I	Vmax, M/c	10.21	0.29	10.35	0.22	<0.0I
2	Vo , m/c	12.42	0.44	12.47	0.87	>0.05
3	tmax, c	6.50	0.58	5.93	0.45	<0.00
4	tyп, с	9.79	0.86	9.86	0.75	>0.05
5	K _I , c ^{-I}	0.580	0.051	0.577	0.038	>0.05
6	K ₂ , c ^{-I}	0.026	0.005	0.026	0.004	>0.05
7	T ₁₀₀ , c	II.7I	0.27	II.69	0.28	>0.05
8	Мах рН, тЭкв/л	7.046	0.071	7.035	0.091	>0.05
9	Мах ВЕ, тЭкв/л	-24.66	3.13	-24.4	3.93	>0.05
	DANK BLOYDONEN BACK		ASSESSED OF	e starte		Maria II

Таким образом, в результате проведенного исследования по изучению влияния препаратов полилактата на удучшение специальной работоспособности бегунов на короткие дистанции, было внявлено, что данные препараты могут оказывать положительный "острый" эффект в подготовке спринтеров. В процессе тренировки с применением препаратов полилактата произошло достоверное удучшение изученных нами показателей специальной работоспособности спортсменов. Наибольшую чувственность к применению препаратов полилактата в ходе тренировки обнаружили показатели алактатной анаэробной мощности и емкости.

выводы

- I. Среди факторов, лимитирующих уровень достижений в беге на короткие дистанции, наиболее важное значение имеют алактатная анаэробная мощность и емкость, связанные с общими запасами энергетических веществ (АТФ и КРФ) в работающих мышцах и развитием внутриклеточных буферных систем, способствующих сохранению постоянства внутренней среды организма и поддержанию высокой выходной мощности при выполнении максимальных упражнений.
- 2. Оценка уровня специальной работоспособности в спринтерском беге может быть выполнена на основе прямых измерений биохимических сдвигов, происходящих в сфере анаэробного обмена, и показателей кислотно-щелочного равновесия, в также косвенным путем, на основе измерений эргометрических показателей, в частности показателей, выводимых на основе анализа кривой скорости бета. При эргометрическом анализе кривой скорости в спринтерском беге выделяются четыре наиболее информативных показателя, характеризующие различные стороны спринтерской работоспособности: пособность к быстрому наращиванию скорости в стартовом разгоне (К_т), способность к развитию максимальной мощности (Vmax),

способность к поддержанию максимальной скорости бега (tуд) и способность противостоять утомлению (K_2).

- 3. Эргометрические показатели кривой скорости в спринтерском беге относительно независимы друг от друга и обнаруживают свое-образный "корреляционный профиль" при сопоставлении с основными показателями аэробного и анаэробного энергетического обмена.
- 4. Результаты в спринтерском беге в наибольшей степени зависят от уровня развития максимальной мошности и показателей, отражающих суммарную анаэробную емкость (Nmax, tup), а также способность противостоять резким сдвигам рН внутренней среды организма (Δ pH). С этой точки зрения, для повышения специальной работоспособности в спринтерском беге представляется оправданным использовать специальные диетарные средстви, направленные на уполичение анаэробной емкооти организма и расширение его буфорных возможностей.
- 5. Прием спортивного напитка, содержащего препараты полилактата, перед выполнением упражнений максимальной мощности, положительно сказывается на улучшение показателей специальной работоспособности спринтеров. Наиболее выраженное улучшение под влиянием приема препаратов полилактата обнаружены в показателях кислотно-щелочного равновесия крови и эргометрических показателях алактатной внаэробной мощности и емкости. Применение препаратов полилактата может быть рекомендовано для внедрения в спортивную практику.

CHICOK PAROT,

ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

I. Волков Н.И., Самборский А.Г. Коррекция кислотно-щелочного равновесия у опортомонов при мышечной работе с использованием диетариих средоти // Молокулярные и клеточные основи кислотно-

основного и температурного гомеостаза: Тез. докл. Всесоюзн. конф.-Сыктывкар, 1991. - С. 26.

2. Волков Н.И., Самборский А.Г. Коррекция гипоксии нагрузки с использованием препаратов полилактата // Фармакологическая коррекция гипоксических состояний: Материалы 2-ой Всесоюзной конференции. - Гродно, 1991. - С. 257.

Quedague