HUMAN PHYSIOLOGY (normal) LECTURE 7. Autonomic Nervous System

Lyubomyr Vovkanych Department of Anatomy & Physiology LSUPhC

Autonomic Nervous System

Autonomic nervous system (ANS) is primarily concerned with regulation of visceral or **vegetative** functions of the body. The "vegetative" functions of the organism are: metabolism, respiration, excretion, fluids circulation

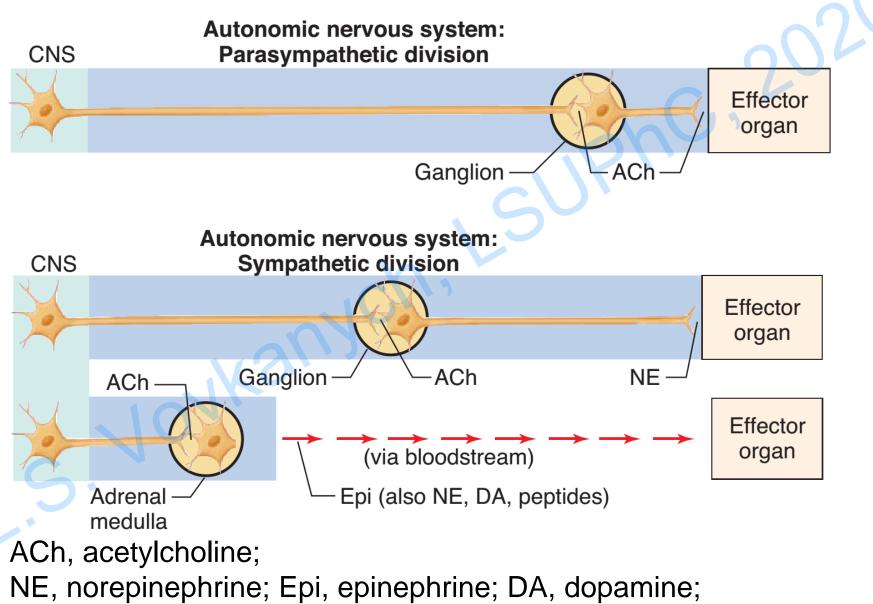
Operates largely outside our awareness ("Autonomic"). The subconscious sensory signals from a visceral organ can enter the autonomic ganglia, the brain stem, or the hypothalamus and then return subconscious reflex *responses* directly back to the visceral organ to control its activities.

Nerve terminals are located in **smooth muscle** (eg, blood vessels, gut wall, urinary bladder), **cardiac muscle**, and **glands** (eg, sweat glands, salivary glands)

Divisions of the ANS

Sympathetic division

increases alertness, metabolic rate, and muscular abilities


Parasympathetic division

- reduces metabolic rate and promotes digestion
- Some target organs are innervated by both divisions and others are controlled by only one.

Enteric nervous system

Iocated within the gastrointestinal tract.

Mediators of the ANS

Sympathetic Division

Preganglionic Neurons

Releases ACh at synapses with ganglionic neurons

Ganglionic Neurons

- Release norepinephrine (NE) at most varicosities
- Releasing NE at peripheral synapses
- Distributing epinephrine (E) and NE throughout body in bloodstream

There are two types of adrenergic membrane receptors

- Alpha receptors (NE more potent)
- Beta receptors (E more potent)

Adrenergic membrane receptors

Receptor	Location(s)	Response(s)	Mechanism
Alpha-1 (α ₁)	Widespread, found in most tissues	Excitation, stimulation of metabolism	Enzyme activation; intracellular release of Ca ²⁺
Alpha-2 (α ₂)	Sympathetic neuromuscular or neuroglandular junctions	Inhibition of effector cell	Reduction of cAMP concentrations
Beta-1 (β ₁)	Heart, kidneys, liver	Stimulation, increased energy consumption	Enzyme activation
Beta-2 (β ₂)	Smooth muscle in vessels, intestines, lungs, bronchi	Inhibition, relaxation	Enzyme activation
Beta-3 (β ₃)	Adipose tissue	Stimulation of lipolysis	Enzyme activation

Sympathetic release of ACh and NO

Cholinergic (ACh) sympathetic terminals

- Innervate sweat glands of skin and blood vessels of skeletal muscles and brain
- Stimulate sweat gland secretion and dilate blood vessels

Nitroxidergic synapses

- Release nitric oxide (NO) as neurotransmitter
- Neurons innervate smooth muscles in walls of blood vessels in skeletal muscles and the brain
- Produce vasodilation and increased blood flow

Sympathomimetic Drugs

- Produce the effects of sympathetic stimulation.
- Both E and NE act only for a short duration of about 1 to 2 minutes
- Sympathomimetic drugs injected intravenously act for 30 min. -2 hours
- Drugs stimulating the **Receptors Directly**
 - Phenylephrine (alpha receptors)
 - Isoproterenol (beta receptors)
 - Albuterol (beta2 receptors)

Drugs Inducing the release of NE

- Ephedrine
- Tyramine
- Amphetamine

Sympathetic Blockers

Drugs that prevent actions of sympathetic neurotransmitter

- **Reserpine** (prevention of synthesis and storage of NE)
- Quanethidine (prevention of release of NE)
- Phentolamine (blockade of alpha adrenergic receptors)
- Metaprolol (blockade of beta adrenergic receptors)
- Hexamethonium (blockade of transmission of nerve impulse through sympathetic ganglia)

Parasympathetic Division

Preganglionic Neurons

 Releases Acetylcholine (ACh) at synapses with ganglionic neurons

Ganglionic Neurons

- Release ACh as neurotransmitter
- ACh is inactivated by acetylcholinesterase (AChEsterase) at synapse

There are two types of ACh membrane receptors

- Nicotinic receptors
- Muscarinic receptors

Membrane Receptors of ACh

Receptor	Location(s)	Response(s)	Mechanism
Nicotinic	All autonomic synapses between preganglionic and ganglionic neurons; neuromuscular synapses of SNS	Stimulation, excitation; muscular contraction	Opening of chemically gated Na ⁺ channels
Muscarinic	All parasympathetic and cholinergic sympathetic neuromuscular or neuroglandular junctions	Variable	Enzyme activation (G proteins) causing changes in membrane permeability to K ⁺

Parasympathomimetic Drugs

- Produce the effects of parasympathetic stimulation
- Exhibit their actions for a longer time

Drugs which act on Muscarinic receptors

- Pilocarpine
- Methacholine

Drugs which **prolong the action of ACh** (inhibit the activity of acetylcholinesterase)

- Neostigmine
- Physostigmine

Parasympathetic Blockers

Drugs, which prevent the actions of parasympathetic neurotransmitter (inhibit the actions of ACh by blocking the **muscarinic receptors**)

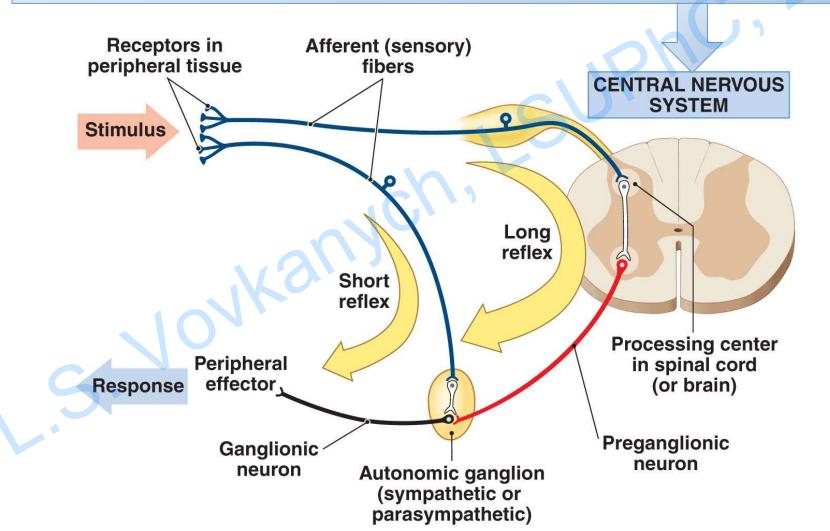
- Atropine
- Scopolamine

Ganglionic blockers are the drugs that prevent the transmission of impulses from preganglionic neurons to postganglionic neurons (block both sympathetic and parasympathetic ganglia are commonly used to block sympathetic ganglia)

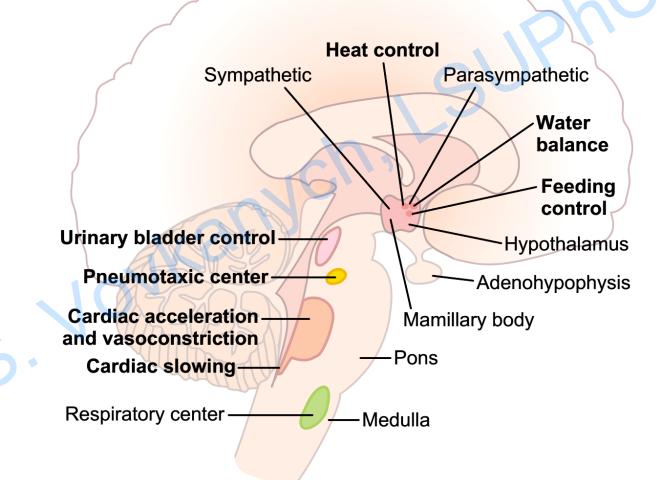
- Tetraethyl ammonium ion
- Hexamethonium ion
- Pentolinium

Visceral Reflexes

Long reflexes


- Visceral sensory neurons deliver information to CNS along dorsal roots of spinal nerves
- ANS carries motor commands to visceral effectors
- Coordinate activities of entire organ, important in most organs

Short reflexes


- Bypass CNS, involve sensory neurons and interneurons located within autonomic ganglia
- Control simple motor responses with localized effects
 One small part of target organ, important in Digestive tract

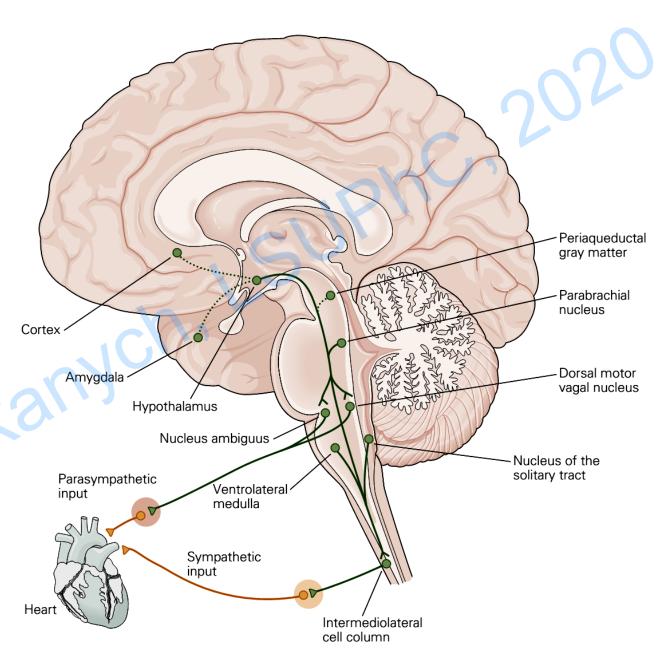
Visceral Reflexes

All visceral reflexes can be modified, **facilitated**, or **inhibited** by higher centers, especially **hypothalamus**

Autonomic control areas in the brain stem and hypothalamus

Control of autonomic responses

Direct projections


(solid lines)

- hypothalamic paraventricular nucleus,
- parabrachial nucleus, nucleus of the solitary tract,
- ventrolateral medulla

Indirect projections

(dashed lines)

- cerebral cortex,
- mygdala,
- periaqueductal grey matter

Visceral Reflexes

VISCERAL RE	ellexes	
Reflex	Stimulus	Response
Gastric and intestinal reflexes	Pressure and physical contact	Smooth muscle contractions that propel food materials and mix with secretions
Defecation	Distention of rectum	Relaxation of internal anal sphincter
Urination	Distention of urinary bladder	Contraction of walls of urinary bladder; relaxation of internal urethral sphincter
Direct light reflex	Bright light	Constriction of pupils of both eyes
Baroreceptor reflex	Sudden rise in carotid blood pressure	Reduction in heart rate and force of contraction

Visceral Reflexes

L.S.

Reflex	Stimulus	Response
Cardioacceleratory reflex	Sudden decline in blood pressure in carotid artery	Increase in heart rate and force of contraction
Vasomotor reflexes	Changes in blood pressure in major arteries	Changes in diameter of peripheral vessels
Pupillary reflex	Low light level	Dilation of pupil

Structure	Sympathetic Effects	Parasympathetic Effects (muscarinic)
EYE	Dilation of pupil (α_1) ; accommodation for distance vision (β_2)	Constriction of pupil for close vision
Lacrimal glands	None (not innervated)	Secretion
Eye Sphincter pupill. A Ciliary muscle Lacrimal glands A Sympathetic Effects	Cervical Ganglia Cervical ganglia Eye (or C Dilator p	Far accommodation of ciliary muscle
A = Activation I = Inhibition	C = Contraction R = Relay	xation D = Dilatation

Structure	Sympathetic Effects	Parasympathetic Effects (muscarinic)
SKIN		
Sweat glands	Increased secretion, palms and soles (α_1) ; generalized increase in secretion (cholinergic)	None (not innervated)
Errector of pili muscles	Contraction; erection of hairs (α_1)	None (not innervated)
Sympathetic Effects	S-C Hair muscles of skin	S CA Sweat glands Postganglionic sympathetic
A = Activation I = Inhibition	C = Contraction R = Rel	axation D = Dilatation

Structure	Sympathetic Effects	Parasympathetic Effects
CARDIOVASCULAR	SYSTEM	
Arteries of skin	Dilation (cholinergic); constriction (α_1)	None
Arteries of skeletal muscles	Dilation (β_2 and cholinergic; nitroxidergic)	None
Arteries of heart	Dilation (β_2); constriction (α_1, α_2)	None
Arteries of lungs	Dilation (β_2); constriction (α_1)	None
Arteries of digestive viscera	Constriction (α_1); dilation (α_2)	None
Arteries of kidneys	Constriction, decreased urine production (α_1, α_2) dilation, increased urine production (β_1, β_2)	None
Arteries of brain	Dilation (cholinergic and nitroxidergic)	None
Veins	Constriction (α_1 , β_1)	None

Structure	Sympathetic	: Effects		ympathe carinic)	etic Effects	
Heart		art rate, force of and blood pressur	e contra		art rate, force sure	of
Heart Slows impulse conduction Heart rate	mpathetic Effects	1 2 3 4 5 6 7 8 1 2 3 4 1 2 3 4 4		Hear Faster condu Heart Myoc tracti	sympathetic Effects $t (\beta_1 \text{ and } \beta_2)$ $t (\beta_1 \text{ and } \beta_2)$ t stimulus uction trate \uparrow ardial con- on force ability \uparrow	
A = Activation	I = Inhibition	C = Contraction	R = Relaxatio	n	D = Dilatation	

Structure	Sympathetic Effects	Parasympathetic Effects (muscarinic)
ENDOCRINE SYSTEM		
Suprarenal gland	Secretion of epinephrine, norepinephrine by suprarenal medulla	None (not innervated)
Pancreas	Decreased insulin secretion (α_2)	None
Sympathetic Effects	Ganglion coeliacum Pancre I Insulin secretion I Exocrine secretion	n (α ₂)
A = Activation I = Inhibition	C = Contraction R = Rela	xation D = Dilatation

Structure	Sympathetic Effects	Parasympathetic Effects (muscarinic)
RESPIRATORY SYSTEM		C I I
Airways	Increased airway diameter (β_2)	Decreased airway diameter
Secretory glands	Mucous secretion (α_1)	None
Bronchi Secretion A) Musculature C)	1 2 3	Parasympathetic Effects
Sympathetic Effects		CD Bronchi (β ₂)
A = Activation I = Inhibition	C = Contraction R = Relat	xation D = Dilatation

Structure	Sympathetic Effects	Parasympathetic Effects (muscarinic)
DIGESTIVE SYSTEM		n ^v
Salivary glands	Production of viscous secretion (α_1, β_1) containing mucins and enzymes	Production of copious, watery secretion
Sphincters	Constriction (α_1)	Dilation
General level of activity	Decreased (α_2 , β_2)	Increased
Secretory glands	Inhibition (α_2)	Stimulation
Liver	Glycogen breakdown, glucose synthesis and release (α_1 , β_2)	Glycogen synthesis
Pancreas	Decreased exocrine secretion (α_1)	Increased exocrine secretion

Structure	Sympathetic Effects	Parasympathetic Effects (muscarinic)
SKELETAL MUSCLES	Increased force of contraction, glycogen breakdown (β_2) Facilitation of ACh release at neuromuscular junction (α_2)	None (not innervated)
ADIPOSE TISSUE	Lipolysis, fatty acid release (α_1 , β_1 , β_3)	???
URINARY SYSTEM	- NV	
Kidneys	Secretion of renin (β_1)	???
Urinary bladder	Constriction of internal sphincter; relaxation of urinary bladder (α_1 , β_2)	Tensing of urinary bladder, relaxation of internal sphincter to eliminate urine

ANS Response to Muscle Activity

Sympathetic Division increases in many ways the ability of the body to perform vigorous muscle activity:

- Increased arterial pressure
- Increased blood flow to active muscles with decreased blood flow to organs, that are not needed for rapid motor activity (gastrointestinal tract and the kidneys)
- Increased rates of cellular metabolism throughout the body
- Increased blood glucose concentration
- Increased glycolysis in the liver and in muscle
- Increased muscle strength
- Increased mental activity

References

Martini R., Nath J. Fundamentals of Anatomy & Physiology. Eighth Edition

Guyton, Arthur C. **Textbook of medical physiology** / Arthur C. Guyton, John E. Hall. - 11th ed.

Sembulingam K., Sembulingam P. Essentials of Medical Physiology. Sixth Edition

Scanlon, Valerie C. **Essentials of anatomy and physiology** / Valerie C. Scanlon, Tina Sanders. — 5th ed.

Fox: Human Physiology. Eighth Edition

Silbernagl S., Despopoulos A. Color Atlas of Physiology. 6th edition